135
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical analysis of pentagonal ribbed absorber plate of solar air collector in an indirect solar dryer for enhanced performance

ORCID Icon & ORCID Icon
Pages 3363-3380 | Received 25 Oct 2023, Accepted 04 Feb 2024, Published online: 28 Feb 2024

References

  • Abhay, L., V. P. Chandramohan, and V. R. K. Raju. 2018. Numerical analysis on solar air collector provided with artificial square shaped roughness for indirect type solar dryer. Journal of Cleaner Production 190:353–67. doi:10.1016/j.jclepro.2018.04.130.
  • Aharwal, K. R., B. K. Gandhi, and J. S. Saini. 2008. Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew Energy 33 (4):585–96. doi:10.1016/j.renene.2007.03.023.
  • Anderson, J. D. J. 1995. Computational fluid dynamics, the basics with applications. New York, NY: McGraw-Hill, Inc. United States of America.
  • Aouissi, Z., and F. Chabane. 2022. Numerical and experimental study of thermal efficiency of the transversal rectangular baffles with incline angle inside of solar air collector. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (4):8921–8942. doi:10.1080/15567036.2022.2128474.
  • Bezbaruah, P. J., R. S. Das, and B. K. Sarkar. 2021. Experimentally validated 3D simulation and performance optimization of a solar air duct with modified conical vortex generators. Solar Energy 224:1040–1062. doi:10.1016/j.solener.2021.06.052.
  • Bhagoria, J. L., J. S. Saini, and S. C. Solanki. 2002. Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renew Energy 25 (3):341–369. doi:10.1016/S0960-1481(01)00057-X.
  • Bopche, S. B., and M. S. Tandale. 2009. Experimental investigation on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. International Journal of Heat and Mass Transfer 52 (11–12):2834–48. doi:10.1016/j.ijheatmasstransfer.2008.09.039.
  • Gawande, V. B., A. S. Dhoble, D. B. Zodpe, and S. Chamoli. 2016. Experimental and CFD based thermal performance prediction of solar air heater provided with chamfered square rib as artificial roughness. Journal of the Brazilian Society of Mechanical Sciences and Engineering 38 (2):643–63. doi:10.1007/s40430-015-0402-9.
  • Gupta, M. K., and S. C. Kaushik. 2009. Performance evaluation of solar air heater having expanded metal mesh as artificial roughness on absorber plate. International Journal of Thermal Sciences 48 (5):1007–1016. doi:10.1016/j.ijthermalsci.2008.08.011.
  • Jasyal, N. K., S. L. Sharma, and A. Debbarma. 2023. Performance analysis of solar air heater using triangular corrugated absorber under jet impingement. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (3):9063–9080. doi:10.1080/15567036.2023.2230932.
  • Jaurker, A. R., J. S. Saini, and B. K. Gandhi. 2006. Heat transfer and friction characteristics by providing rib-grooved artificial roughness on one broad heated wall of a large aspect ratio. Solar Energy 80 (8):895–907. doi:10.1016/j.solener.2005.08.006.
  • Jouybari, N. F., and T. S. Lundstorm. 2020. Performance improvement of a solar air heater by covering the absorber plate with a thin porous material. Energy 190:116437. doi:10.1016/j.energy.2019.116437.
  • Kabeel, A. E., and M. Abdelgaied. 2018. Experimental evaluation of a two-stage indirect solar dryer with reheating coupled with HDH desalination system for remote areas. Desalination 425:22–29. doi:10.1016/j.desal.2017.10.016.
  • Kottayat, N., S. Kumar, A. K. Yadav, and S. Anish. 2020. Computational and experimental studies on the development of an energy-efficient drier using ribbed triangular duct solar air heater. Solar Energy 209:454–69. doi:10.1016/j.solener.2020.09.012.
  • Kumar, B. V., G. Manikandan, and P. R. Kanna. 2021. Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD. Energy 234:121154. doi:10.1016/j.energy.2021.121154.
  • Lingayat, A., and V. P. Chandramohan. 2021. Numerical investigation on solar air collector and its practical application in the indirect solar dryer for banana chips drying with energy and exergy analysis. Thermal Science and Engineering Progress 26:101077. doi:10.1016/j.tsep.2021.101077.
  • Manjunath, M. S., K. V. Karanth, and N. Y. Sharma. 2018. Numerical investigation on heat transfer enhancement of solar air heater using sinusoidal corrugations on absorber plate. International Journal of Mechanical Sciences 138-139:219–228. doi:10.1016/j.ijmecsci.2018.01.037.
  • Mugi, V. R., M. C. Gilago, and V. P. Chandramohan. 2022. Thermal performance of indirect solar dryer and drying kinetics of guava without and with thermal energy storage. International Journal of Environmental Science and Technology 20 (12):13619–34. doi:10.1007/s13762-022-04713-8.
  • Mugi, V. R., M. C. Gilago, and V. P. Chandramohan. 2023. Performance analysis and drying kinetics of beetroot slices dried in an innovative solar dryer without and with thermal storage unit. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (1):1900–1917. doi:10.1080/15567036.2023.2184002.
  • Mujumdar, A. S., P. K. Nema, and B. P. Kaur. 2018. Drying technologies for food: Fundamentals and applications. 1st ed. Florida: Routledge.
  • Patel, Y. M., S. V. Jain, and V. J. Lakhera. 2021. Thermo-hydraulic performance analysis of a solar air heater roughened with discrete reverse NACA profile ribs. International Journal of Thermal Sciences 167:107026. doi:10.1016/j.ijthermalsci.2021.107026.
  • Patel, S. S., and A. Lanjewar. 2019. Experimental and numerical investigation of solar air heater with novel V-rib geometry. Journal of Energy Storage 21:750–764. doi:10.1016/j.est.2019.01.016.
  • Prasad, K., and S. C. Mullick. 1983. Heat transfer characteristics of a solar air heater used for drying purposes. Applied Energy 13 (2):83–93. doi:10.1016/0306-2619(83)90001-6.
  • Saini, R. P., and J. S. Saini. 1997. Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element. International Journal of Heat and Mass Stansfer 40 (4):973–86. doi:10.1016/0017-9310(96)00019-1.
  • Shivam, P., N. Namith, and V. P. Chandramohan. 2022. Numerical solution of solar air heater with triangular corrugations for indirect solar dryer: Influence of pitch and an optimized pitch of corrugation for enhanced performance. Solar Energy 243:1–12. doi:10.1016/j.solener.2022.07.044.
  • Singh, D., and V. Kumar. 2023. Thermal performance investigation of frustum roughened solar air heater. Solar Energy 255:339–54. doi:10.1016/j.solener.2023.03.036.
  • Tuncer, A. D., and A. Khanlari. 2023. Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey. Energy 282:128883. doi:10.1016/j.energy.2023.128883.
  • Varun, R. P. Saini, and S. K. Singal. 2008. Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on the absorber plate. Renew Energy 33 (6):1398–405. doi:10.1016/j.renene.2007.07.013.
  • Wang, Z., Y. Diao, Y. Zhao, C. Chen, L. Liang, and T. Wang. 2019. Thermal performance investigation of an integrated collector–storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode. Energy 181:882–96. doi:10.1016/j.energy.2019.05.197.
  • Wang, T., Y. Zhao, Y. Diao, R. Ren, and Z. Wang. 2019. Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays. Energy 177:16–28. doi:10.1016/j.energy.2019.04.059.
  • Yassen, T. A., N. D. Mokhlif, and M. A. Eleiwi. 2019. Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use. Renew Energy 138:852–60. doi:10.1016/j.renene.2019.01.114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.