118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Robust optimal operation scheduling method for integrated energy system considering flexible energy storage and mixed hydrogen natural gas

ORCID Icon, , , ORCID Icon, &
Pages 3476-3498 | Received 06 Oct 2023, Accepted 11 Feb 2024, Published online: 29 Feb 2024

References

  • Ali, F., M. Ahmar, Y. Jiang, and M. AlAhmad. 2021. A techno-economic assessment of hybrid energy systems in rural Pakistan. Energy 215:119103. doi:10.1016/j.energy.2020.119103.
  • Alipour, M., K. Zare, H. Seyedi, and M. Jalali. 2019. Real-time price-based demand response model for combined heat and power systems. Energy 168:1119–27. doi:10.1016/j.energy.2018.11.150.
  • Ancona, M. A., G. Antonioni, L. Branchini, A. De Pascale, F. Melino, V. Orlandini, V. Antonucci, and M. Ferraro. 2016. Renewable energy storage system based on a power-to-gas conversion process. Energy Procedia 101:854–61. doi:10.1016/j.egypro.2016.11.108.
  • Asl, D. K., A. R. Seifi, M. Rastegar, and M. Mohammadi. 2020. Multi-objective optimal operation of integrated thermal-natural gas-electrical energy distribution systems. Applied Thermal Engineering 181:115951. doi:10.1016/j.applthermaleng.2020.115951.
  • Chen, S., A. Kharrazi, S. Liang, B. D. Fath, M. Lenzen, and J. Yan. 2020. Advanced approaches and applications of energy footprints toward the promotion of global sustainability. Applied Energy 261:114415. doi:10.1016/j.apenergy.2019.114415.
  • China Charging Alliance. 2022. NB/T 00012-2022 implementation opinions of the National Development and Reform Commission and other departments on further improving the service support capacity of electric vehicle charging infrastructure. Beijing: China National Energy Administration.
  • China Electricity Council. 2013. NB/T 32011-2013 technical requirement of power forecasting system for PV power station. Beijing: National Energy Administration of China.
  • Clegg, S., and P. Mancarella. 2015. Integrated modelling and assessment of the operational impact of power-to-gas (P2G) on electrical and gas transmission networks. IEEE Transactions on Sustainable Energy 6 (4):1234–44. doi:10.1109/TSTE.2015.2424885.
  • CPC Hebei Provincial Committee. Hebei Xiongan’s new district planning outline. http://www.xiongan.gov.cn/2018-04/21/c_129855813.htm.2018(inChinese).
  • Cui, D., Z. Wang, P. Liu, S. Wang, Z. Zhang, D. G. Dorrell, and X. Li. 2022. Battery electric vehicle usage pattern analysis driven by massive real-world data. Energy 250:250. doi:10.1016/j.energy.2022.123837.
  • Electricity Price Data Sources. n.d. Accessed July 27, 2023. http://www.sgcc.com.cn/html/.
  • Engauge Digitizer Software. n.d. Accessed June 6, 2023. http://markummitchell.github.io/engauge-digitizer.
  • Floudas, C. A. 1995. Nonlinear and mixed-integer optimization: Fundamentals and applications. Oxford University Press. doi:10.1093/oso/9780195100563.001.0001.
  • GUROBI commercial solver. Accessed March 12, 2023. https://www.gurobi.com/solutions/gurobi-optimizer.
  • Haeseldonckx, D., and W. D’haeseleer. 2007. The use of the natural gas pipeline infrastructure for hydrogen transport in a changing market structure. International Journal of Hydrogen Energy 32 (10–11):1381–86. doi:10.1016/J.IJHYDENE.2006.10.018.
  • He, Z., J. Khazaei, and J. D. Freihaut. 2022. Optimal integration of vehicle to building (V2B) and building to vehicle (B2V) technologies for commercial buildings. Sustainable Energy, Grids and Networks 32:100921. doi:10.1016/j.segan.2022.100921.
  • Huang, P., M. Lovati, X. Zhang, and C. Bales. 2020. A coordinated control to improve performance for a building cluster with energy storage, electric vehicles, and energy sharing considered. Applied Energy 268:114983. doi:10.1016/j.apenergy.2020.114983.
  • Huang, M., Y. Wu, X. Wen. 2013. Feasibility analysis of hydrogen transport in natural gas pipeline. Gas & Heat 33 (4):39–42.
  • Kumar, V., V. Sharma, Y. Arya, R. Naresh, and A. Singh. 2022. Stochastic wind energy integrated multi source power system control via a novel model predictive controller based on Harris Hawks optimization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (4):10694–719. doi:10.1080/15567036.2022.2156637.
  • Li, Y., F. Bu, J. Gao, and G. Li. 2022. Optimal dispatch of low-carbon integrated energy system considering nuclear heating and carbon trading. Journal of Cleaner Production 378:134540. doi:10.1016/j.jclepro.2022.134540.
  • Liu, J., W. Sun, and J. Yan. 2021. Effect of P2G on flexibility in integrated power-natural gas-heating energy systems with gas storage. Energies 14 (1):196. doi:10.3390/EN14010196.
  • Liu, G., Y. Xu, and K. Tomsovic. 2015. Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization. IEEE Transactions on Smart Grid 7 (1):227–37. doi:10.1109/TSG.2015.2476669.
  • Nojavan, S., A. Akbari-Dibavar, A. Farahmand-Zahed, and K. Zare. 2020. Risk-constrained scheduling of a CHP-based microgrid including hydrogen energy storage using robust optimization approach. International Journal of Hydrogen Energy 45 (56):32269–84. doi:10.1016/j.ijhydene.2020.08.227.
  • Peng, G. A. O., G. A. O. Zhenyu, Z. Shangxin. 2021. New progress in China’s oil and gas pipeline construction in 2020. International Petroleum Economics 29 (3):53–60.
  • Peng, L., W. Zixuan, W. Nan, W. Yang, M. Li, X. Zhou, Y. Yin, J. Wang, and T. Guo. 2021. Stochastic robust optimal operation of community integrated energy system based on integrated demand response. International Journal of Electrical Power & Energy Systems 128 (14):106735. doi:10.1016/j.ijepes.2020.106735.
  • Qiu, Y., Q. Li, L. Huang, C. Sun, T. Wang, and W. Chen. 2020. Adaptive uncertainty sets‐based two‐stage robust optimisation for economic dispatch of microgrid with demand response. IET Renewable Power Generation 14 (18):3608–15. doi:10.1049/iet-rpg.2020.0138.
  • Shahidehpour, M., Y. Fu, and T. Wiedman. 2005. Impact of natural gas infrastructure on electric power systems. Proceedings of the IEEE 93 (5):1042–1056. doi:10.1109/JPROC.2005.847253.
  • Siqin, Z., D. X. Niu, X. Wang, H. Zhen, M. Li, and J. Wang. 2022. A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission. Energy 260:124796. doi:10.1016/j.energy.2022.124796.
  • Sun, P., X. Hao, J. Wang, D. Shen, and L. Tian. 2021. Low‐carbon economic operation for integrated energy system considering carbon trading mechanism. Energy Science & Engineering 9 (11):2064–78. doi:10.1002/ese3.967.
  • Tabkhi, F., C. Azzaro-Pantel, L. Pibouleau. 2008. A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection. International Journal of Hydrogen Energy 33 (21):6222–31. doi:10.1016/j.ijhydene.2008.07.103.
  • Tan, Q., Y. Ding, and Y. Zhang. 2017. Optimization model of an efficient collaborative power dispatching system for carbon emissions trading in China. Energies 10 (9):1405. doi:10.3390/en10091405.
  • Tostado-Véliz, M., S. Kamel, H. M. Hasanien, R. A. Turky, and F. Jurado. 2022. Optimal energy management of cooperative energy communities considering flexible demand, storage and vehicle-to-grid under uncertainties. Sustainable Cities and Society 84:104019. doi:10.1016/j.scs.2022.104019.
  • Tran, M. K., A. DaCosta, A. Mevawalla, S. Panchal, and M. Fowler. 2021. Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO, NCA. Batteries 7 (3):51. doi:10.3390/batteries7030051.
  • Vesa, A. V., T. Cioara, I. Anghel, M. Antal, C. Pop, B. Iancu, I. Salomie, and V. T. Dadarlat. 2020. Energy flexibility prediction for data centre engagement in demand response programs. Sustainability 12 (4):1417. doi:10.3390/su12041417.
  • Wang, L., W. Dai, L. Zhu, X. Wang, C. Yin, H. Cong, T. Shi, X. Qi, and R. Bi. 2022. Multi‐objective expansion planning of park‐level integrated energy system considering the volatility trend of CETP. IET Generation, Transmission & Distribution 16 (6):1225–43. doi:10.1049/gtd2.12363.
  • Wang, C., B. Jiao, L. Guo, Z. Tian, J. Niu, and S. Li. 2016. Robust scheduling of building energy system under uncertainty. Applied Energy 167:366–76. doi:10.1016/j.apenergy.2015.09.070.
  • Wang, J., Y. Liu, F. Ren, and S. Lu. 2020. Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility. Energy 197:117313. doi:10.1016/j.energy.2020.117313.
  • Wang, Y., L. Xue, Y. Zhang, F. Song, D. Zhang, J. Zhu, and X. Zhang. 2021. Research on low-carbon economic expansion planning of electric-gas interconnected integrated energy system containing power to gas. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2021:1–23. doi:10.1080/15567036.2021.1936698.
  • Weather Data Sources. n.d. Accessed July 27, 2023. http://www.weather.com.cn/weather1d/101091201.shtml/.
  • Wei, Z., S. Zhang, G. Sun. 2017. Power-to-gas considered peak load shifting research for integrated electricity and natural gas energy systems. Proceedings of the CSEE 37 (16):4601–09. doi:10.13334/j.0258-8013.pcsee.161361.
  • Xiaohui, Z., L. Xiaoyan, Z. Jiaqing, and G. Wenbo. 2019. Electricity–gas‐integrated energy planning based on reward and penalty ladder‐type carbon trading cost. IET Generation, Transmission & Distribution 13 (23):5263–70. doi:10.1049/iet-gtd.2019.0666.
  • Yang, D., Y. Xu, X. Liu, C. Jiang, F. Nie, and Z. Ran. 2022. Economic-emission dispatch problem in integrated electricity and heat systems considering multi-energy demand response and carbon capture technologies. Energy 253:124153. doi:10.1016/j.energy.2022.124153.
  • Yin, W. J., and X. Qin. 2022. Cooperative optimization strategy for large-scale electric vehicle charging and discharging. Energy 258:124969. doi:10.1016/j.energy.2022.124969.
  • Zeng, B., and L. Zhao. 2013. Solving two-stage robust optimization problems using a column-and-constraint generation method. Operations Research Letters 41 (5):457–461. doi:10.1016/j.orl.2013.05.003.
  • Zhang, M., X. Ai, J. Fang, W. Yao, W. Zuo, Z. Chen, and J. Wen. 2018. A systematic approach for the joint dispatch of energy and reserve incorporating demand response. Applied Energy 230:1279–91. doi:10.1016/j.apenergy.2018.09.044.
  • Zhang, Z., J. Du, M. Li, J. Guo, Z. Xu, and W. Li. 2022. Bi-level optimization dispatch of integrated-energy systems with P2G and carbon capture. Frontiers in Energy Research 9:784703. doi:10.3389/fenrg.2021.784703.
  • Zhang, C., J. B. Greenblatt, P. MacDougall, S. Saxena, and A. Jayam Prabhakar. 2020. Quantifying the benefits of electric vehicles on the future electricity grid in the midwestern United States. Applied Energy 270:115174. doi:10.1016/j.apenergy.2020.115174.
  • Zhang, X., and Y. Zhang. 2020. Environment-friendly and economical scheduling optimization for integrated energy system considering power-to-gas technology and carbon capture power plant. Journal of Cleaner Production 276:123348. doi:10.1016/j.jclepro.2020.123348.
  • Zhang, X., Y. Zou, J. Fan, and H. Guo. 2019. Usage pattern analysis of Beijing private electric vehicles based on real-world data. Energy 167:1074–85. doi:10.1016/j.energy.2018.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.