28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Behavior analysis of Low-Heat Rejection engine powered by biodiesel under varied exhaust gas recirculation ratios

ORCID Icon, ORCID Icon, &
Pages 3546-3569 | Received 15 Jun 2023, Accepted 13 Feb 2024, Published online: 11 Mar 2024

References

  • Abedin, M. J., H. H. Masjuki, M. A. Kalam, A. Sanjid, and A. M. Ashraful. 2014. Combustion, performance, and emission characteristics of low heat rejection engine operating on various biodiesels and vegetable oils. Energy Conversion and Management 85:173–89. doi:10.1016/j.enconman.2014.05.065.
  • Aithal, S. M. 2010. Modeling of NOx formation in diesel engines using finite-rate chemical kinetics. Applied Energy 87 (7):2256–65. doi:10.1016/j.apenergy.2010.01.011.
  • Anandkumar, G., A. Backiyaraj, S. Balaji, and G. Devaradjane. 2015. Effect of EGR on the performance and emission characteristics of LHR diesel engine using electronic fuel injection system fueled with biodiesel. Journal of Chemical and Pharmaceutical Sciences 7:422–25.
  • Anandkumar, G., S. Balaji, A. Backiyaraj, and G. Devaradjane. 2015. Experimental investigation on performance and emission characteristics of mahua biodiesel using electronic fuel injection system. Journal of Chemical and Pharmaceutical Sciences 7:396–99.
  • Annamalai, B., and P. Murugesan. 2023. The combined effect of hydrogen enrichment and exhaust gas recirculation on the combustion stability, performance and emissions of CI engine energized by algae biodiesel. International Journal of Hydrogen Energy 50:524–46. doi:10.1016/j.ijhydene.2023.09.278.
  • Aydin, H. 2013. Combined effects of thermal barrier coating and blending with diesel fuel on usability of vegetable oils in diesel engines. Applied Thermal Engineering 51 (1–2):623–29. doi:10.1016/j.applthermaleng.2012.10.030.
  • Bakır, H., Ü. Ağbulut, A. E. Gürel, G. Yıldız, U. Güvenç, M. E. M. Soudagar, A. T. Hoang, B. Deepanraj, G. Saini, and A. Afzal. 2022. Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms. Journal of Cleaner Production 360:131946. doi:10.1016/j.jclepro.2022.131946.
  • Buyukkaya, E., and M. Cerit. 2007. Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method. Surface & Coatings Technology 202 (2):398–402. doi:10.1016/j.surfcoat.2007.06.006.
  • Buyukkaya, E., and M. Cerit. 2008. Experimental study of NOx emissions and injection timing of a low heat rejection diesel engine. International Journal of Thermal Sciences 47 (8):1096–106. doi:10.1016/j.ijthermalsci.2007.07.009.
  • Cao, D. N., H. Q. Luu, V. G. Bui, and T. T. H. Tran. 2020. Effects of injection pressure on the NOx and PM emission control of diesel engine: A review under the aspect of PCCI combustion condition. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 2020:1–18. doi:10.1080/15567036.2020.1754531.
  • Cerit, M., V. Ayhan, A. Parlak, and H. Yasar. 2011. Thermal analysis of a partially ceramic coated piston: Effect on cold start HC emission in a spark ignition engine. Applied Thermal Engineering 31 (2–3):336–41. doi:10.1016/j.applthermaleng.2010.09.015.
  • Haşimoğlu, C., M. Ciniviz, İ. Özsert, Y. İçingür, A. Parlak, and M. Sahir Salman. 2008. Performance characteristics of a low heat rejection diesel engine operating with biodiesel. Renew Energy 33 (7):1709–15. doi:10.1016/j.renene.2007.08.002.
  • Hazar, H. 2011. Characterization and effect of using cotton methyl ester as fuel in a LHR diesel engine. Energy Conversion and Management 52 (1):258–63. doi:10.1016/j.enconman.2010.06.066.
  • Hazar, H., and U. Ozturk. 2010. The effects of Al2O3–TiO2 coating in a diesel engine on performance and emission of corn oil methyl ester. Renew Energy 35 (10):2211–16. doi:10.1016/j.renene.2010.02.028.
  • Hoang, A. T. 2021. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. Journal of Marine Engineering & Technology 20 (5):299–311. doi:10.1080/20464177.2018.1532734.
  • Jain, A., A. P. Singh, and A. K. Agarwal. 2017. Effect of split fuel injection and EGR on NOx and PM emission reduction in a Low Temperature Combustion (LTC) mode diesel engine. Energy 122:249–64. doi:10.1016/j.energy.2017.01.050.
  • Kannan, M., R. Balaji, R. T. Sarath Babu, M. Bennita, and P. Kuppili. 2020. Computational analysis on combustion, characteristics and ignition analysis on IC engine using mahua oil. Materials Today: Proceedings. doi:10.1016/j.matpr.2020.09.525.
  • Karthikeyan, B., and K. Srithar. 2011. Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol. Applied Energy 88 (1):323–29. doi:10.1016/j.apenergy.2010.07.011.
  • Krishnamani, S., V. Harish, V. HariShankar, and T. M. Raj. 2018. The experimental investigation on performance and emission characteristics of ceramic coated diesel engine using diesel and biodiesel. Materials Today: Proceedings 5 (8):16327–37. doi:10.1016/j.matpr.2018.05.127.
  • Krishna, K. V., G. R. K. Sastry, M. V. S. M. Krishna, and J. D. Barma. 2018. Investigation on performance and emission characteristics of EGR coupled semi adiabatic diesel engine fuelled by DEE blended rubber seed biodiesel. Engineering Science and Technology, an International Journal 21 (1):122–29. doi:10.1016/j.jestch.2018.02.010.
  • Kulkarni, P. S., G. Sharanappa, M. R. Ramesh, N. R. Banapurmath, and S. V. Khandal. 2019. Experimental investigations of a Low Heat Rejection (LHR) engine powered with Mahua Oil Methyl Ester (MOME) with Exhaust Gas Recirculation (EGR). Biofuels 10 (6):747–56. doi:10.1080/17597269.2017.1345356.
  • Li, T., J. A. Caton, and T. J. Jacobs. 2016. Energy distributions in a diesel engine using Low Heat Rejection (LHR) concepts. Energy Conversion and Management 130:14–24. doi:10.1016/j.enconman.2016.10.051.
  • Masera, K., and A. K. Hossain. 2019. Biofuels and thermal barrier: A review on compression ignition engine performance, combustion and exhaust gas emission. Journal of the Energy Institute 92 (3):783–801. doi:10.1016/j.joei.2018.02.005.
  • Mittal, N., R. L. Athony, R. Bansal, and C. Ramesh Kumar. 2013. Study of performance and emission characteristics of a partially coated LHR SI engine blended with n-butanol and gasoline. Alexandria Engineering Journal 52 (3):285–93. doi:10.1016/j.aej.2013.06.005.
  • Musthafa, M. M. 2018. Thermal barrier coated diesel engine running on biodiesel: A review. International Journal of Sustainable Engineering 11 (3):159–66. doi:10.1080/19397038.2017.1393024.
  • Pandey, K. K., and S. Murugan. 2022. A review of bio-fuelled LHR engines. International Journal of Ambient Energy 43 (1):2486–509. doi:10.1080/01430750.2020.1712254.
  • Pandey, K. K., J. Paparao, and S. Murugan. 2022a. Experimental studies of an LHR mode DI Diesel Engine run on antioxidant doped biodiesel. Fuel 313:123028. doi:10.1016/j.fuel.2021.123028.
  • Pandey, K. K., J. Paparao, S. Murugan. 2022b. Experimental studies of an LHR mode DI Diesel Engine run on antioxidant doped biodiesel. Fuel 313:123028, 10.1016/j.fuel.2021.123028.
  • Paparao, J., N. Soundarya, and S. Murugan. 2023. Advancing green technology: Experimental study on low heat rejection engine utilizing bio-based antioxidant-doped biodiesel-diesel blends and oxy-hydrogen gas. Energy 283:129152. doi:10.1016/j.energy.2023.129152.
  • Parlak, A., H. Yasar, and B. Sahin. 2003. Performance and exhaust emission characteristics of a Lower Compression Ratio LHR diesel engine. Energy Conversion and Management 44 (1):163–75. doi:10.1016/S0196-8904(01)00201-1.
  • Rajendra Prasath, B., P. Tamilporai, and M. F. Shabir. 2010. Analysis of combustion, performance and emission characteristics of low heat rejection engine using biodiesel. International Journal of Thermal Sciences 49 (12):2483–90. doi:10.1016/j.ijthermalsci.2010.07.010.
  • Ramalingam, S., E. Murugesan, P. Ganesan, and M. Govindasamy. 2020. Influence of natural leaf additive in a biodiesel-operated LHR engine on performance and NOx emission. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–19. doi:10.1080/15567036.2020.1745959.
  • Raptotasios, S. I., N. F. Sakellaridis, R. G. Papagiannakis, and D. T. Hountalas. 2015. Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR. Applied Energy 157:814–23. doi:10.1016/j.apenergy.2014.12.041.
  • Reddy, G. V., N. G. Rasu, and T. H. Prasad. 2021. Analysis of performance and emission characteristics of TBC coated low heat rejection engine. International Journal of Ambient Energy 42 (7):808–15. doi:10.1080/01430750.2019.1567581.
  • Rezania, S., B. Oryani, J. Park, B. Hashemi, K. K. Yadav, E. E. Kwon, J. Hur, and J. Cho. 2019. Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications. Energy Conversion and Management 201:112155. doi:10.1016/j.enconman.2019.112155.
  • Rößler, M., T. Koch, C. Janzer, and M. Olzmann. 2017. Mechanisms of the NO2 formation in diesel engines. MTZ Worldwide 78 (7–8):70–75. doi:10.1007/s38313-017-0057-2.
  • Sakthi Rajan, C., and K. Muralidharan. 2022. Effects of partially stabilized zirconia fueled with borassus biofuel at different piston bowl geometries in LHR engine. Journal of Thermal Analysis and Calorimetry 2022 (16):8901–17. doi:10.1007/s10973-021-11127-0.
  • Sambandam, P., H. Venu, and B. K. Narayanaperumal. 2020. Effective utilization and evaluation of waste plastic pyrolysis oil in a low heat rejection single cylinder diesel engine. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2020.1803453.
  • Saravanan, P., N. M. Kumar, M. Ettappan, R. Dhanagopal, and J. Vishnupriyan. 2020. Effect of exhaust gas re-circulation on performance, emission and combustion characteristics of ethanol-fueled diesel engine. Case Studies in Thermal Engineering 20:100643. doi:10.1016/j.csite.2020.100643.
  • Saravanan, P., D. Mala, V. Jayaseelan, and N. M. Kumar. 2019. Experimental performance investigation of partially stabilized zirconia coated low heat rejection diesel engine with waste plastic oil as a fuel. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (4):11046–59. doi:10.1080/15567036.2019.1683647.
  • Sayyed, S., R. K. Das, and K. Kulkarni. 2021. Performance assessment of multiple biodiesel blended diesel engine and NOx modeling using ANN. Case Studies in Thermal Engineering 28:101509. doi:10.1016/j.csite.2021.101509.
  • Senthur, N. S., S. BalaMurugan, H. RamGanesh, and S. Divakara. 2021. Experimental analysis on the performance, emission, and combustion characteristics of diesel, and diesel-water emulsions in low heat rejection engine. Materials Today: Proceedings 39:1351–55. doi:10.1016/j.matpr.2020.04.574.
  • Senthur, N. S., and T. S. Ravikumar. 2020. Performance and emission characteristics analysis of thermal barrier coated LHR engine fuelled with eucalyptus-water emulsion. International Journal of Ambient Energy 41 (9):1060–65. doi:10.1080/01430750.2018.1501747.
  • Sorate, K. A., and P. V. Bhale. 2015. Biodiesel properties and automotive system compatibility issues. Renewable and Sustainable Energy Reviews 41:777–98. doi:10.1016/j.rser.2014.08.079.
  • Tuan Hoang, A., M., Tabatabaei, M., Aghbashlo, A., Paolo Carlucci, and A. I. Ölçer. 2021. Anh Tuan Le, Abbas Ghassemi, rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renewable and Sustainable Energy Reviews 135:110204. doi:10.1016/j.rser.2020.110204.
  • Vinay Kumar, D., P. Ravi Kumar, and M. S. Kumari. 2013. Prediction of performance and emissions of a biodiesel fueled lanthanum zirconate coated direct injection diesel engine using artificial neural networks. Procedia Engineering 64:993–1002. doi:10.1016/j.proeng.2013.09.176.
  • Zhang, Z., R. Dong, G. Lan, T. Yuan, and D. Tan. 2023. Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: A review. Environmental Science and Pollution Research 30 (14):39338–76. doi:10.1007/s11356-023-25579-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.