27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact of fuel injection parameters and hydrogen enrichment on CI engine characteristics fueeled with Ceiba pentandra biodiesel

& ORCID Icon
Pages 3734-3747 | Received 13 Dec 2023, Accepted 14 Feb 2024, Published online: 13 Mar 2024

References

  • Akar, M. A., E. Kekilli, O. Bas, S. Yildizhan, H. Serin, and M. Ozcanli. 2018. Hydrogen enriched waste oil biodiesel usage in compression ignition engine. International Journal of Hydrogen Energy 43 (38):18046–52. doi:10.1016/j.ijhydene.2018.02.045.
  • Anand, T., and S. Debbarma. 2024. Experimental investigation of fuel injection timing effects on a CRDI diesel engine running on hydrogen-enriched waste plastic oil. International Journal of Hydrogen Energy 57:1051–69. February. doi:10.1016/j.ijhydene.2024.01.052.
  • Ashok, A., S. K. Gugulothu, R. V. Reddy, and B. Burra. 2022. Influence of 1-pentanol as the renewable fuel blended with jatropha oil on the reactivity controlled compression ignition engine characteristics and trade-off study with variable fuel injection pressure. Sustainable Energy Technologies and Assessments 52:102215. doi:10.1016/j.seta.2022.102215.
  • Baraniak, J., and M. Kania-Dobrowolska. 2023. Multi-purpose utilization of kapok fiber and properties of ceiba pentandra tree in various branches of industry. Journal of Natural Fibers. 20 (1). doi:10.1080/15440478.2023.2192542.
  • Chacko, N., C. Johnson, P. Varadarajan, S. Sai Srinivas, and T. Jeyaseelan. 2021. A comparative evaluation of cetane enhancing techniques for improving the smoke, NOx and BSFC trade-off in an automotive diesel engine. Fuel 289:119918. doi:10.1016/j.fuel.2020.119918.
  • Das, S., and B. Das. 2023. The characteristics of waste-cooking palm biodiesel-fueled CRDI diesel engines: Effect hydrogen enrichment and nanoparticle addition. International Journal of Hydrogen Energy 48 (39):14908–22. doi:10.1016/j.ijhydene.2022.12.245.
  • Dhahad, H. A., and M. A. Fayad. 2020. Role of different antioxidants additions to renewable fuels on NOX emissions reduction and smoke number in direct injection diesel engine. Fuel 279:118384. doi:10.1016/j.fuel.2020.118384.
  • Ge, S., K. Brindhadevi, C. Xia, A. Salah Khalifa, A. Elfasakhany, Y. Unpaprom, and H. V. Doan. 2022. Enhancement of the combustion, performance and emission characteristics of spirulina microalgae biodiesel blends using nanoparticles. Fuel 308:121822. doi:10.1016/j.fuel.2021.121822.
  • Jamrozik, A., K. Grab-Rogaliński, and W. Tutak. 2020. Hydrogen effects on combustion stability, performance and emission of diesel engine. International Journal of Hydrogen Energy 45 (38):19936–47. doi:10.1016/j.ijhydene.2020.05.049.
  • Jeyaseelan, T., N. Chacko, P. N, S. M. K. O, J. Alexander, and E. Porpatham. 2021. Partial hydrogenation and hydrogen induction: A comparative study with B20 operation in a turbocharged CRDI diesel engine. International Journal of Hydrogen Energy 46(43):22659–69. doi:10.1016/j.ijhydene.2021.04.068.
  • Korakianitis, T., A. M. Namasivayam, and R. J. Crookes. 2010. Hydrogen dual-fuelling of compression ignition engines with emulsified biodiesel as pilot fuel. International Journal of Hydrogen Energy 35 (24):13329–44. doi:10.1016/j.ijhydene.2010.08.007.
  • Köse, H., and M. Acaroğlu. 2020, The effect of hydrogen addition to cynara biodiesel on engine performance and emissions in diesel engine. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–20. May. doi:10.1080/15567036.2020.1765904.
  • Koten, H. 2018. Hydrogen effects on the diesel engine performance and emissions. International Journal of Hydrogen Energy 43 (22):10511–19. doi:10.1016/j.ijhydene.2018.04.146.
  • Kumar, M., S. Bhowmik, and A. Paul. 2022. Effect of pilot fuel injection pressure and injection timing on combustion, performance and emission of hydrogen-biodiesel dual fuel engine. International Journal of Hydrogen Energy 47 (68):29554–67. doi:10.1016/j.ijhydene.2022.06.260.
  • Lalsangi, S., V. S. Yaliwal, N. R. Banapurmath, M. E. M. Soudagar, D. Balasubramanian, A. Sonthalia, E. G. Varuvel, and M. Wae-Hayee. 2023. Influence of hydrogen injection timing and duration on the combustion and emission characteristics of a diesel engine operating on dual fuel mode using biodiesel of dairy scum oil and producer gas. International Journal of Hydrogen Energy 48(55):21313–30. doi:10.1016/j.ijhydene.2022.11.305.
  • Liang, S., J. He, L. Ji, and D. Zhao. 2022. Identifying the skeleton mechanism for oscillatory combustion with functional weight analysis. Combustion & Flame 244:112243. doi:10.1016/j.combustflame.2022.112243.
  • Maawa, W. N., R. Mamat, G. Najafi, O. M. Ali, and A. Aziz. 2015. Engine performance and emission of compression ignition engine fuelled with emulsified biodiesel-water. IOP Conference Series: Materials Science & Engineering 100:012061. doi:10.1088/1757-899X/100/1/012061.
  • Muthukumar, K., and G. Kasiraman. 2024. Utilization of fuel energy from single-use low-density polyethylene plastic waste on CI engine with hydrogen enrichment – an experimental study. Energy 289 :129926. February. doi:10.1016/j.energy.2023.129926.
  • Rakopoulos, C., and D. Kyritsis. 2006. Hydrogen enrichment effects on the second law analysis of natural and landfill gas combustion in engine cylinders. International Journal of Hydrogen Energy 31 (10):1384–93. doi:10.1016/j.ijhydene.2005.11.002.
  • Ramalingam, S., M. DhakshinaMoorthy, and S. Subramanian. 2022. Effect of natural antioxidant additive on hydrogen-enriched biodiesel operated compression ignition engine. International Journal of Hydrogen Energy 47 (48):20771–83. doi:10.1016/j.ijhydene.2022.04.207.
  • Sagari, J. K., B. Sukhvinder Kaur, S. Vadapalli, V. T. Dadi, S. S. Guddanti, and S. K. Lakkoju. 2020. Comprehensive performance, combustion, emission, and vibration parameters assessment of diesel engine fuelled with a hybrid of niger seed oil biodiesel and hydrogen: Response surface methodology approach. SN Applied Sciences 2 (9):1508. doi:10.1007/s42452-020-03304-x.
  • Saravanan, B., B. Musthafa, and M. Asokan. 2023. Assessment of CI engine vibration at various injection timing and injection pressure with ceiba pentandra biodiesel. International Journal of Green Energy 21(4):719–31. doi:10.1080/15435075.2023.2211131.
  • Saravanan, B., B. Musthafa, and M. A. Asokan. 2023. A combined study of filterability and soaking strength of fuel filter and effect of injection timing on CI engine characteristics using ceiba pentandra biodiesel. Biofuels 14(7):703–11. doi:10.1080/17597269.2023.2167270.
  • Shrivastava, P., T. N. Verma, and A. Pugazhendhi. 2019. An experimental evaluation of engine performance and emisssion characteristics of CI engine operated with Roselle and Karanja biodiesel. Fuel 254:115652. doi:10.1016/j.fuel.2019.115652.
  • Silitonga, A. S., H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, and W. T. Chong. 2013. Characterization and production of ceiba pentandra biodiesel and its blends. Fuel 108 :855–58. doi:10.1016/j.fuel.2013.02.014.
  • Wang, S., Z. Zhang, X. Hou, J. Lv, G. Lan, G. Yang, and J. Hu. 2023. The environmental potential of hydrogen addition as complementation for diesel and biodiesel: A comprehensive review and perspectives. Fuel 342:127794. doi:10.1016/j.fuel.2023.127794.
  • Winangun, K., A. Setiyawan, and B. Sudarmanta. 2023. The combustion characteristics and performance of a diesel dual-fuel (DDF) engine fueled by palm oil biodiesel and hydrogen gas. Case Studies in Thermal Engineering 42:102755. doi:10.1016/j.csite.2023.102755.
  • Wu, H.-W., and Z.-Y. Wu. 2012. Investigation on combustion characteristics and emissions of diesel/hydrogen mixtures by using energy-share method in a diesel engine. Applied Thermal Engineering 42:154–62. doi:10.1016/j.applthermaleng.2012.03.004.
  • Yan, Z., B. Gainey, and B. Lawler. 2022. A parametric modeling study of thermal barrier coatings in low-temperature combustion engines. Applied Thermal Engineering 200:117687. doi:10.1016/j.applthermaleng.2021.117687.
  • Yilmaz, N., F. M. Vigil, and B. Donaldson. 2022. Fuel effects on PAH formation, toxicity and regulated pollutants: Detailed comparison of biodiesel blends with propanol, butanol and pentanol. Science of the Total Environment 849 :157839. doi:10.1016/j.scitotenv.2022.157839.
  • Zhang, Z., J. Li, J. Tian, Y. Zhong, Z. Zou, R. Dong, S. Gao, W. Xu, and D. Tan. 2022. The effects of Mn-based catalysts on the selective catalytic reduction of NOx with NH3 at low temperature: A review. Fuel Processing Technology 230:107213. doi:10.1016/j.fuproc.2022.107213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.