70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of soot for pressurized turbulent kerosene-air diffusion flames using method of moments

ORCID Icon &
Pages 3522-3545 | Received 08 Aug 2023, Accepted 15 Feb 2024, Published online: 29 Feb 2024

References

  • Blanquart, G., and H. Pitsch. 2009. A joint volume-surface-hydrogen multi-variate model for soot formation. Combustion generated fine carbonaceous particles. Chapter 27:437–63.
  • Charest, M. R. J., H. I. Joo, Ö. L. Gülder, and C. P. T. Groth, 2011. Experimental and numerical study of soot formation in laminar ethylene diffusion flames at elevated pressures from 10 to 35 atm. Proceedings of the Combustion Institute 33, 549–57. 10.1016/j.proci.2010.07.054
  • Chemkin-pro Theory Manual.2019. USA: ANSYS Inc.
  • Consalvi, J. L., and F. Liu. 2015. Numerical study of the effects of pressure on soot formation in laminar coflow n-heptane/air diffusion flames between 1 and 10atm. Proceedings of the Combustion Institute 35 (2):1727–1734. doi:10.1016/j.proci.2014.07.045.
  • Dobbins, R. A., R. A. Fletcher, and H. C. Chang. 1998. The evolution of soot precursor particles in a diffusion flame. Combustion and Flame 115 (3):285–98. doi:10.1016/S0010-2180(98)00010-8.
  • Eckel, G., J. Grohmann, L. Cantu, N. Slavinskaya, T. Kathrotia, M. Rachner, P. Le Clercq, W. Meier, and M. Aigner. 2019. LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry. Combustion and Flame 207:134–52. doi:10.1016/j.combustflame.2019.05.011.
  • Eigentler, F., and P. Gerlinger. 2022. A detailed PAH and soot model for complex fuels in CFD applications. Flow, Turbulence and Combustion 109 (1):225–51. doi:10.1007/s10494-022-00319-9.
  • Eigentler, F., P. M. Gerlinger, and R. Eggels. 2022. Soot CFD simulation of a real aero engine combustor. In AIAA 2022-0489 AIAA SCITECH 2022 forum. San Diego, CA: Virtual. doi:10.2514/6.2022-0489.
  • The Engineering Toolbox. 2024. Kinematic viscosities of some common liquids. https://www.engineeringtoolbox.com/kinematic-viscosity-d_397.html. accessed on February 3, 2024.
  • Fluent Theory Guide. 2019. ANSYS Inc.USA
  • Ghose, P., J. Patra, A. Datta, and A. Mukhopadhyay. 2016. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels. Combustion Theory and Modelling 20 (3):457–485. doi:10.1080/13647830.2016.1147607.
  • Giusti, A., E. Mastorakos, C. Hassa, J. Heinze, E. Magens, and M. Zedda, 2017. Investigation of flame structure and soot formation in a single sector Model combustor using experiments and numerical simulations based on the LES/CMC approach. Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. 4A: Combustion, Fuels and Emissions. 10.1115/GT2017-63620
  • Gkantonas, S., J. M. Foale, A. Giusti, and E. Mastorakos. 2020. Soot emission simulations of a single sector Model combustor using incompletely stirred reactor network modeling. Journal of Engineering for Gas Turbines and Power 142 142 (10). doi:10.1115/1.4048408.
  • Grosshandler, W. L. 1993. RADCAL: A narrow-band Model for radiation calculations in a combustion environment. NIST Technical Note 1402. doi:10.6028/NIST.TN.1402.
  • Guo, J., Z. Gan, J. Li, H. Li, B. Feng, and X. Xing. 2023. Experimental study of oxygen depletion effects on soot morphology and nanostructure in coflow diffusion aviation fuel (RP-3) flames. Energies 16 (3166):1–20. doi:10.3390/en16073166.
  • Guo, H., Z. Gu, K. A. Thomson, G. J. Smallwood, and F. F. Baksh. 2013. Soot formation in a laminar ethylene/air diffusion flame at pressures from 1 to 8 atm. Proceedings of the Combustion Institute 34 (1):1795–1802. doi:10.1016/j.proci.2012.07.006.
  • Guo, J., Y. Tang, V. Raman, and H. G. Im. 2021. Numerical investigation of pressure effects on soot formation in laminar coflow ethylene/air diffusion flames. Fuel 292:120176. doi:10.1016/j.fuel.2021.120176.
  • Huang, J., Y. He, H. Zhang, Y. Dai, and Z. Wang. 2023. Effect of pressure on burning and soot characteristics of RP‑3 kerosene droplets under sub-atmospheric pressure. American Chemical Society Omega 8 (15):14053–65. doi:10.1021/acsomega.3c00655.
  • Irimiea, C., A. Vincent-Randonnier, J. P. Dufitumukiza, S. Puggelli, J. B. May-Carle, et al. 2022. ALTERNATE: Experimental and modeling study of soot formation in high-pressure kerosene and SAF combustion. Towards sustainable aviation summit 2022 (TSAS 2022). Toulouse, France. https://hal.science/hal-03943930
  • Kulakhmetov, R. F., 2020. Measurement and modeling of soot formation and deposition in fuel rich high pressure kerosene combustion. Purdue University Graduate School. PhD Thesis. 10.25394/PGS.13366178.v1
  • Kurzawski, A., M. Hansen, and J. Hewson. 2021. Soot predictions with a laminar flamelet combustion model in sierra/fuego on a coflow scenario. Sandia Report SAND2021–14588. doi:10.2172/1832301.
  • Lecocq, G., D. Poitou, I. Hernández, F. Duchaine, E. Riber, and B. Cuenot. 2014. A methodology for soot prediction including thermal radiation in complex industrial burners. Flow Turbulence Combust 92 (4):947–70. doi:10.1007/s10494-014-9536-6.
  • Liati, A., D. Schreiber, P. A. Alpert, Y. Liao, B. T. Brem, P. Corral Arroyo, J. Hu, H. R. Jonsdottir, M. Ammann, and P. Dimopoulos Eggenschwiler. 2019. Aircraft soot from conventional fuels and biofuels during ground idle and climb-out conditions: Electron microscopy and X-ray micro-spectroscopy. Environmental Pollution 247:658–67. doi:10.1016/j.envpol.2019.01.078.
  • Li, J., and Z. Gan. 2023. Effect of pressure on soot formation and properties in laminar RP-3 kerosene diffusion flames. Combustion Science and Technology. doi:10.1080/00102202.2023.2251664.
  • Lucchesi, M., A. Abdelgadir, A. Attili, and F. Bisetti. 2017. Simulation and analysis of the soot particle size distribution in a turbulent nonpremixed flame. Combustion and Flame 178:35–45. doi:10.1016/j.combustflame.2017.01.002.
  • Moss, J. B., and I. M. Aksit, 2007. Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel. Proceedings of the Combustion Institute 31, 3139–46. 10.1016/j.proci.2006.07.016
  • Mueller, M. E., and H. Pitsch. 2013. Large eddy simulation of soot evolution in an aircraft combustor. Physics of Fluids 25 (110812):1–20. doi:10.1063/1.4819347.
  • Nakod, P., S. Patwardhan, I. Verma, and S. Orsino, 2017. Prediction of soot formation trends in turbulent kerosene-air diffusion jet flames with elevated operating pressure, Proceedings of ASME Gas Turbine India Conference: GTINDIA, Bangalore, India. 10.1115/GTINDIA2017-4736
  • Neoh, K. G., J. B. Howard, and A. F. Sarofim. 1981. Soot oxidation in flames. In Particulate carbon, ed., D. C. Siegla and G. W. Smith. Boston, MA: Springer. doi: 10.1007/978-1-4757-6137-5_9.
  • Prado, G. P., M. L. Lee, R. A. Hites, D. P. Hoult, and J. B. Howard. 1977. Soot and hydrocarbon formation in a turbulent diffusion flame. Symposium (International) on Combustion 16 (1):649–61. doi:10.1016/S0082-0784(77)80360-3.
  • Saffaripour, M., A. Veshkini, M. Kholghy, and M. J. Thomson. 2014. Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of jet A-1, a synthetic kerosene, and n-decane. Combustion and Flame 161 (3):848–63. doi:10.1016/j.combustflame.2013.10.016.
  • Saffaripour, M., P. Zabeti, M. Kholghy, and M. J. Thomson. 2011. An experimental comparison of the sooting behavior of synthetic jet fuels. Energy and Fuels 25 (12):5584–93. doi:10.1021/ef201219v.
  • Saini, R., and A. De. 2018. Soot predictions in higher order hydrocarbon flames: Assessment of semi-empirical models and method of moments. S. De, ed. Modeling and simulation of turbulent combustion, energy, environment, and sustainability. Vol. 11, Springer Nature Singapore Pte Ltd. 10.1007/978-981-10-7410-3_11
  • Schiener, M. A., and R. P. Lindstedt, 2019. Transported probability density function based modelling of soot particle size distributions in non-premixed turbulent jet flames. Proceedings of the Combustion Institute 37, 1049–56. 10.1016/j.proci.2018.06.088
  • Shaddix, C. R., H. Wang, R. W. Schefer, J. C. Oefelein, and L. M. Pickett, 2011. Predicting the effects of fuel composition and flame structure on soot generation in turbulent non-premixed flames, final report, SERDP Project WP-1578
  • Shahriari, B., M. Thomson, and S. Dworkin, 2015. Development and validation of a partially coupled soot model for turbulent kerosene combustion in view of application to gas turbines. Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Montreal, Quebec, Canada. 10.1115/GT2015-43063
  • Smooke, M. D., R. J. Hall, M. B. Colket, J. Fielding, M. B. Long, C. S. McEnally, and L. D. Pfefferle. 2004. Investigation of the transition from lightly sooting towards heavily sooting co-flow ethylene diffusion flames. Combustion Theory and Modelling 8 (3):593–606. doi:10.1088/1364-7830/8/3/009.
  • Verma, I., R. Yadav, P. Nakod, and S. Orsino, 2018. Detailed soot modeling in turbulent kerosene/air diffusion flame: Sensitivity analysis of models using moment of methods. AFRC 2018 conference. https://collections.lib.utah.edu/ark:/87278/s63c0956
  • Wang, H., E. Dames, B. Sirjean, D. A. Sheen, R. Tango, A. Violi, J. Y. W. Lai, F. N. Egolfopoulos, D. F. Davidson, R. K. Hanson, et al., 2010. A high-temperature chemical kinetic model of n alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, (http://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF2.0/index.html)
  • Wen, Z., S. Yun, M. J. Thomson, and M. F. Lightstone. 2003. Modeling soot formation in turbulent kerosene/air jet diffusion flames. Combustion and Flame 135 (3):323–40. doi:10.1016/S0010-2180(03)00179-2.
  • Young, K. J., C. D. Stewart, and J. B. Moss, 1994. Soot formation in turbulent nonpremixed kerosine-air flames burning at elevated pressure: Experimental measurement. Twenty-Fifth Symposium (International) on Combustion, The Combustion Institute, Irvine, CA (United States), 609–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.