47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synergism of surface Co-rich activated carbon-supported bimetallic Co:Fe catalysts for Fischer-Tropsch synthesis

, &
Pages 3720-3733 | Received 13 Jul 2023, Accepted 14 Feb 2024, Published online: 13 Mar 2024

References

  • Abbas, M., J. Zhang, T. S. Mansour, and J. Chen. 2020. Hierarchical porous spinel MFe2O4 (M= fe, zn, ni and Co) nanoparticles: Facile synthesis approach and their superb stability and catalytic performance in Fischer-Tropsch synthesis. International Journal of Hydrogen Energy 45 (18):10754–63. doi:10.1016/j.ijhydene.2020.02.044.
  • Ail, S. S., V. Benedetti, M. Baratieri, and S. Dasappa. 2018. Fuel-rich combustion synthesized Co/Al2O3 catalysts for wax and liquid fuel production via Fischer–tropsch reaction. Industrial & Engineering Chemistry Research 57 (11):3833–43. doi:10.1021/acs.iecr.7b04174.
  • Bahri, S., T. Patra, S. Upadhyayula, and S. Upadhyayula. 2019. Synergistic effect of bifunctional mesoporous ZSM-5 supported fe-co catalyst for selective conversion of syngas with low ribblet ratio into synthetic fuel. Microporous and Mesoporous Materials 275:1–13. doi:10.1016/j.micromeso.2018.08.004.
  • Chen, Y., C. Liu, Y. Zhang, Y. Zhao, L. Wei, X. Wen, X. Zhao, and J. Li. 2017. The influence of fe, ti, Ga and zn on the Fischer–tropsch synthesis catalytic performance of Co-based hierarchically porous ZSM-5 zeolite catalysts. Catalysis Letters 147 (2):502–08. doi:10.1007/s10562-016-1926-z.
  • Del Monte, D. M., A. J. Vizcaíno, J. Dufour, and C. Martos. 2019. Effect of K, Co and mo addition in Fe-based catalysts for aviation biofuels production by Fischer-Tropsch synthesis. Fuel Processing Technology 194:106102. doi:10.1016/j.fuproc.2019.05.025.
  • Díaz, J. A., H. Akhavan, A. Romero, A. M. Garcia-Minguillan, R. Romero, A. Giroir-Fendler, and J. L. Valverde. 2014. Cobalt and iron supported on carbon nanofibers as catalysts for Fischer–tropsch synthesis. Fuel Processing Technology 128:417–24. doi:10.1016/j.fuproc.2014.08.005.
  • Díaz, J. A., A. Romero, A. M. García-Minguillán, A. Giroir-Fendler, and J. L. Valverde. 2015. Carbon nanofibers and nanospheres-supported bimetallic (co and fe) catalysts for the Fischer–Tropsch synthesis. Fuel Processing Technology 138:455–62. doi:10.1016/j.fuproc.2015.06.020.
  • Dlamini, M. W., D. O. Kumi, T. N. Phaahlamohlaka, A. S. Lyadov, D. G. Billing, L. L. Jewell, and N. J. Coville. 2015. Carbon spheres prepared by hydrothermal synthesis—a support for bimetallic iron cobalt Fischer–tropsch catalysts. ChemCatchem 7 (18):3000–11. doi:10.1002/cctc.201500334.
  • Feyzi, M., N. Yaghobi, and V. Eslamimanesh. 2015. Cobalt–iron nano catalysts supported on TiO2–SiO2: Characterization and catalytic performance in Fischer–tropsch synthesis. Materials Research Bulletin 72:143–53. doi:10.1016/j.materresbull.2015.07.039.
  • Gavrilović, L., E. A. Jørgensen, U. Pandey, K. R. Putta, K. R. Rout, E. Rytter, M. Hillestad, and E. A. Blekkan. 2021. Fischer-Tropsch synthesis over an alumina-supported cobalt catalyst in a fixed bed reactor–effect of process parameters. Catalysis Today 369:150–57. doi:10.1016/j.cattod.2020.07.055.
  • Gupta, P. K., A. Mahato, P. Oraon, G. K. Gupta, and S. Maity. 2020. Coal fly ash‐derived mesoporous SBA‐15 as support material for production of liquid hydrocarbon through Fischer–tropsch route. Asia-Pacific Journal of Chemical Engineering 15 (4):e2471. doi:10.1002/apj.2471.
  • Gupta, V. K., L. P. Singh, M. Chaudhary, S. Kushwaha, and S. Kushwaha. 2021. A novel approach to develop activated carbon by an ingenious hydrothermal treatment methodology using phyllanthus emblica fruit stone. Journal of Cleaner Production 288:125643. doi:10.1016/j.jclepro.2020.125643.
  • Horáček, J. 2020. Fischer–Tropsch synthesis, the effect of promoters, catalyst support, and reaction conditions selection. Monatshefte für Chemie - Chemical Monthly 151 (5):649–75. doi:10.1007/s00706-020-02590-w.
  • Jo, S. B., H. J. Chae, T. Y. Kim, C. H. Lee, J. U. Oh, S.-H. Kang, J. W. Kim, M. Jeong, S. C. Lee, and J. C. Kim. 2018. Selective CO hydrogenation over bimetallic Co-fe catalysts for the production of light paraffin hydrocarbons (C2-C4): Effect of H2/CO ratio and reaction temperature. Catalysis Communications 117:74–78. doi:10.1016/j.catcom.2018.08.026.
  • Keppetipola, N. M., M. Dissanayake, P. Dissanayake, B. Karunarathne, M. A. Dourges, D. Talaga, L. Servant, C. Olivier, T. Toupance, and S. Uchida. 2021. Graphite-type activated carbon from coconut shell: A natural source for eco-friendly non-volatile storage devices. RSC Advances 11 (5):2854–65. doi:10.1039/D0RA09182K.
  • Lei, Y., and R. Zhou. 2022. Process simulation of biomass gasification with steam as gasification agent. Energy Sources, Part A Recovery Utilization and Environmental Effects 44 (2):5106–12. doi:10.1080/15567036.2019.1660738.
  • Mohammad, N., R. Y. Abrokwah, R. G. Stevens-Boyd, S. Aravamudhan, and D. Kuila. 2020. Fischer-Tropsch studies in a 3D-printed stainless steel microchannel microreactor coated with cobalt-based bimetallic-MCM-41 catalysts. Catalysis Today 358:303–15. doi:10.1016/j.cattod.2020.02.020.
  • Rochana, P., and J. Wilcox. 2011. A theoretical study of CO adsorption on FeCo (100) and the effect of alloying. Surface Science 605 (7–8):681–88. doi:10.1016/j.susc.2011.01.003.
  • Roesyadi, A., D. H. Ihsanti, and A. Nuraini. 2019. Vol. 673, 12010. Indonesia: IOP Publishing.
  • Russo, M., V. La Parola, M. L. Testa, G. Pantaleo, A. M. Venezia, R. K. Gupta, A. Bordoloi, and R. Bal. 2020. Structural insight in TiO2 supported CoFe catalysts for Fischer–Tropsch synthesis at ambient pressure. Applied Catalysis, A, General 600:117621. doi:10.1016/j.apcata.2020.117621.
  • Slatter, N. L., B. Vichanpol, J. Natakaranakul, K. Wattanavichien, P. Suchamalawong, K. Hashimoto, N. Tsubaki, T. Vitidsant, and W. Charusiri. 2022. Syngas production for Fischer–tropsch synthesis from Rubber wood pellets and eucalyptus wood chips in a Pilot horizontal gasifier with CaO as a tar removal catalyst. American Chemical Society Omega 7 (49):44951–61. doi:10.1021/acsomega.2c05178.
  • Sonal, K. K., K. K. Pant, S. Upadhyayula, and S. Upadhyayula. 2017. Synergistic effect of Fe–co bimetallic catalyst on FTS and WGS activity in the Fischer–tropsch process: A kinetic study. Industrial & Engineering Chemistry Research 56 (16):4659–71. doi:10.1021/acs.iecr.6b04517.
  • Teimouri, Z., N. Abatzoglou, and A. K. Dalai. 2023. Design of a renewable catalyst support derived from biomass with optimized textural features for Fischer tropsch synthesis. Renew Energy 202:1096–109. doi:10.1016/j.renene.2022.11.061.
  • Todic, B., L. Nowicki, N. Nikacevic, and D. B. Bukur. 2016. Fischer–Tropsch synthesis product selectivity over an industrial iron-based catalyst: Effect of process conditions. Catalysis Today 261:28–39. doi:10.1016/j.cattod.2015.09.005.
  • Toncón-Leal, C. F., J. F. Múnera, J. J. Arroyo-Gómez, and K. Sapag. 2022. Fe, Co and Fe/Co catalysts supported on SBA-15 for Fischer-Tropsch Synthesis. Catalysis Today 394:150–60. doi:10.1016/j.cattod.2021.07.023.
  • Xia, H., Z. Wang, and S. Liu. 2022. Research on fuel spray characteristics of coal-made Fisch-Tropsch process diesel/methanol. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (4):9074–85. doi:10.1080/15567036.2022.2129877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.