683
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of protuberances on the aerodynamic performance of a wind turbine blade – a review

, , ORCID Icon &
Pages 3416-3431 | Received 27 Jul 2023, Accepted 16 Feb 2024, Published online: 28 Feb 2024

References

  • Abate, G., D. N. Mavris, and L. N. Sankar. 2019. Performance effects of leading edge tubercles on the NREL phase VI wind turbine blade. Journal of Energy Resource Technology 141 (5):051206. doi:10.1115/1.4042529.
  • Aftab, S. M. A., N. A. Razak, A. S. Mohd Rafie, and K. A. Ahmad. 2016. Mimicking the humpback whale: An aerodynamic perspective. Progress in Aerospace Sciences 84:48–69. doi:10.1016/j.paerosci.2016.03.002.
  • Alhassan, Y., J. S. Enaburekhan, and I. A. Rufai, “Numerical performance analysis of eppler E387 airfoil with leading edge protuberance at low wind speed,” in 2nd National Engineering Conference, ACICON, Bayero University, Kano, 2016, pp. 239–44.
  • Allampalli, V., R. Hixon, M. Nallasamy, and S. D. Sawyer. 2009. High-accuracy large-step explicit runge-kutta (HALE-RK) schemes for computational aeroacoustics. Journal of Computational Physics 228 (10):3837–50. doi:10.1016/j.jcp.2009.02.015.
  • Arunvinthan, S., S. N. Pillai, and S. Cao. 2020. Aerodynamic characteristics of variously modified leading-edge protuberanced (LEP) wind turbine blades under various turbulent intensities. Journal of Wind Engineering and Industrial Aerodynamics 202:104188. doi:10.1016/j.jweia.2020.104188.
  • Asli, M., B. Mashhadi Gholamali, and A. Mesgarpour Tousi. 2015. Numerical analysis of wind turbine airfoil aerodynamic performance with leading edge bump. Mathematical Problems in Engineering 2015:8. doi:10.1155/2015/493253.
  • Bai, C. J., Y. Y. Lin, S. Y. Lin, and W. C. Wang. 2015. Computational fluid dynamics analysis of the vertical axis wind turbine blade with tubercle leading edge. Ournal of Renewable and Sustainable Energy 7 (3). doi:10.1063/1.4922192.
  • Bai, C. J., W. C. Wang, and P. W. Chen. 2016. The effects of sinusoidal leading edge of turbine blades on the power coefficient of horizontal-axis wind turbine (HAWT). International Journal of Green Energy 13 (12):1193–200. doi:10.1080/15435075.2016.1180624.
  • Bapat, A., P. Salunkhe, and M. Varpe. 2021. Effect of single and multiple protuberances on the aerodynamic performance of a wind turbine blade. ASME International Mechcanical Engineering Congress Exposure Process 10:5–10.
  • Biedermann, T. M., T. P. Chong, F. Kameier, and C. O. Paschereit. 2017. Statistical-empirical modeling of airfoil noise subjected to leading-edge serrations. AIAA Journal 55 (9):3128–42. doi:10.2514/1.J055633.
  • Bolzon, M. D. P., R. M. Kelso, and M. Arjomandi. 2016. Formation of vortices on a tubercled wing, and their effects on drag. Aerospace Science and Technology 56:46–55. doi:10.1016/j.ast.2016.06.025.
  • Bolzon, M. D., R. M. Kelso, and M. Arjomandi. 2016. Tubercles and their applications. Journal of Aerospace Engineering 29 (1):04015013. doi:10.1061/(ASCE)AS.1943-5525.0000491.
  • Bolzon, M. D., R. M. Kelso, and M. Arjomandi. 2017. Performance effects of a single tubercle terminating at a swept wing’s tip. Experimental Thermal & Fluid Science 85:52–68. doi:10.1016/j.expthermflusci.2017.02.016.
  • Cai, C., Z. Zuo, T. Maeda, Y. Kamada, Q. Li, K. Shimamoto, and S. Liu. 2017. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances. Physics of Fluids 29 (11):115110. doi:10.1063/1.4991596.
  • Cai, C., Z. Zuo, M. Morimoto, T. Maeda, Y. Kamada, and S. Liu. 2018. Two-step stall characteristic of an airfoil with a single leading-edge protuberance. AIAA Journal 56 (1):64–77. doi:10.2514/1.J055921.
  • Čarija, Z., E. Marušić, Z. Novak, and S. Fućak. 2014. Numerical analysis of aerodynamic characteristics of a bumped leading edge turbine blade. Engineering Review 34 (2):93–101.
  • Chaitanya, P., P. Joseph, S. Narayanan, C. Vanderwel, J. Turner, J. W. Kim, and B. Ganapathisubramani. 2017. Performance and mechanism of sinusoidal leading edge serrations for the reduction of turbulence–aerofoil interaction noise. Journal of Fluid Mechanics 818:435–64. doi:10.1017/jfm.2017.141.
  • Chen, W., W. Qiao, W. Duan, and Z. Wei. 2021. Experimental study of airfoil instability noise with wavy leading edges. Applied Acoustics 172:107671. doi:10.1016/j.apacoust.2020.107671.
  • Chen, W., W. Qiao, F. Tong, L. Wang, and X. Wang. 2018. Experimental investigation of wavy leading edges on rod-aerofoil interaction noise. Journal of Sound and Vibration 422:409–31. doi:10.1016/j.jsv.2018.02.043.
  • Chen, H., and J. J. Wang. 2014. Vortex structures for flow over a delta wing with sinusoidal leading edge. Experiments in Fluids 55 (6):1–9. doi:10.1007/s00348-014-1761-1.
  • da Silva Abrantes, T. T., A. A. R. Cruz, A. A. de Paula, V. G. Kleine, and F. Büttner, “The wing three-dimensional effects on wavy leading edge performance,” in 35th AIAA Applied Aerodynamics Conference, 5-9 June 2017, Denver, Colorado, pp. 1–22.
  • de Paula, A. A., J. R. Meneghini, V. G. Kleine, and R. D. M. Girard, “The wavy leading edge performance for a very thick airfoil,” in AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting, 9 - 13 January 2017, Grapevine, Texas, pp. 1–27.
  • Favier, J., A. Pinelli, and U. Piomelli. 2012. Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers. Comptes Rendus - Mechanical 340 (1–2):107–14. doi:10.1016/j.crme.2011.11.004.
  • Fish, F. E., and J. M. Battle. 1995. Hydrodynamic design of the humpback whale flipper. Journal of Morphology 225 (1):51–60. doi:10.1002/jmor.1052250105.
  • Gonçalves, A. N. C., J. M. C. Pereira, and J. M. M. Sousa. 2022. Passive control of dynamic stall in a H-Darrieus vertical axis wind turbine using blade leading-edge protuberances. Applied Energy 324:119700. doi:10.1016/j.apenergy.2022.119700.
  • Guerreiro, J. L. E., and J. M. M. Sousa. 2012. Low-reynolds-number effects in passive stall control using sinusoidal leading edges. AIAA Journal 50 (2):461–69. doi:10.2514/1.J051235.
  • Hansen, K. L., R. M. Kelso, and B. B. Dally. 2011. Performance variations of leading-edge tubercles for distinct airfoil profiles. AIAA Journal 49 (1):185–94. doi:10.2514/1.J050631.
  • Hansen, K., R. Kelso, and C. Doolan. 2012. Reduction of flow induced airfoil tonal noise using leading edge sinusoidal modifications. Acoustics Australia 40 (3):172–77.
  • Hansen, K. L., N. Rostamzadeh, R. M. Kelso, and B. B. Dally. 2016. Evolution of the streamwise vortices generated between leading edge tubercles. Journal of Fluid Mechanics 788:730–66. doi:10.1017/jfm.2015.611.
  • Hendrickson, K. and R. K. Agarwal, “Numerical investigation of leading-edge protuberances on high lift, high camber airfoils at low reynolds number,” in AIAA Aviation Forum, 15-19,June, 2020, VIirtual Event, pp. 1–19.
  • Hrynuk, J. T., and D. G. Bohl. 2020. The effects of leading-edge tubercles on dynamic stall. Journal of Fluid Mechanics 893:1–30. doi:10.1017/jfm.2020.216.
  • Huang, C. C., C. J. Bai, Y. C. Shiah, and Y. J. Chen. 2016. Optimal design of protuberant blades for small variable-speed horizontal axis wind turbine-experiments and simulations. Energy 115:1156–67. doi:10.1016/j.energy.2016.09.100.
  • Huang, G. Y., Y. C. Shiah, C. J. Bai, and W. T. Chong. 2015. Experimental study of the protuberance effect on the blade performance of a small horizontal axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics 147:202–11. doi:10.1016/j.jweia.2015.10.005.
  • Johari, H., C. Henoch, D. Custodio, and A. Levshin. 2007. Effects of leading-edge protuberances on airfoil performance. AIAA Journal 45 (11):2634–42. doi:10.2514/1.28497.
  • Joseph, J., and A. Sathyabhama. 2022. Leading edge tubercle on wind turbine blade to mitigate problems of stall, hysteresis, and laminar separation bubble. Energy Conversion and Management 255:115337. doi:10.1016/j.enconman.2022.115337.
  • Ke, W., I. Hashem, W. Zhang, and B. Zhu. 2022. Influence of leading-edge tubercles on the aerodynamic performance of a horizontal-axis wind turbine: A numerical study. Energy 239:122186. doi:10.1016/j.energy.2021.122186.
  • Kim, J. W., S. Haeri, and P. F. Joseph. 2016. On the reduction of aerofoil-turbulence interaction noise associated with wavy leading edges. Journal of Fluid Mechanics 792:526–52. doi:10.1017/jfm.2016.95.
  • Kumar, V. V., and D. A. Shah. 2017. Application of tubercles in wind turbine blades: A review. Applied Mechanics & Materials 867 (1):254–60. doi:10.4028/www.scientific.net/AMM.867.254.
  • Kunya, B. I., C. O. Folayan, G. Y. Pam, F. O. Anafi, and N. M. Muhammad. 2019. Performance study of whale-inspired wind turbine blade at low wind speed using numerical method. CFD Letters 11 (7):11–25.
  • Lau, A. S. H., S. Haeri, and J. W. Kim. 2013. The effect of wavy leading edges on aerofoil-gust interaction noise. Journal of Sound and Vibration 332 (24):6234–53. doi:10.1016/j.jsv.2013.06.031.
  • Lin, J. C. 2002. Review of research on low-profile vortex generators to control boundary-layer separation. Progress in Aerospace Sciences 38 (4–5):389–420. doi:10.1016/S0376-0421(02)00010-6.
  • Lin, Y. T., and P. H. Chiu. 2020. Influence of leading-edge protuberances of fx63 airfoil for horizontal-axis wind turbine on power performance. Sustainable Energy Technology Assessments 38:100675. doi:10.1016/j.seta.2020.100675.
  • Lin, S. Y., Y. Y. Lin, C. J. Bai, and W. C. Wang. 2016. Performance analysis of vertical-axis-wind-turbine blade with modified trailing edge through computational fluid dynamics. Renew Energy 99:654–62. doi:10.1016/j.renene.2016.07.050.
  • Llorente, E., and D. Ragni. 2020. Trailing-edge serrations effect on the performance of a wind turbine. Renewable Energy 147:437–46. doi:10.1016/j.renene.2019.08.128.
  • Lu, Y., Z. Li, X. Chang, Z. Chuang, J. Xing, and Y. Lu. 2021. An aerodynamic optimization design study on the bio-inspired airfoil with leading-edge tubercles leading-edge tubercles. Engineering Applications of Computational Fluid Mechanics 15 (1):292–312. doi:10.1080/19942060.2020.1856723.
  • Miklosovic, D. S., M. M. Murray, and L. E. Howle. 2007. Experimental evaluation of sinusoidal leading edges. Journal of Aircraft 44 (4):1404–08. doi:10.2514/1.30303.
  • Miklosovic, D. S., M. M. Murray, L. E. Howle, and F. E. Fish. 2004. Leading-edge tubercles delay stall on humpback whale (megaptera novaeangliae) flippers. Physics of Fluids 16 (5):L39–L42. doi:10.1063/1.1688341.
  • Narayanan, S., P. Chaitanya, S. Haeri, P. Joseph, J. W. Kim, and C. Polacsek. 2015. Airfoil noise reductions through leading edge serrations. Physics of Fluids 27 (2). doi:10.1063/1.4907798.
  • Ng, B. F., T. H. New, and R. Palacios, “Bio-inspired leading-edge tubercles to improve fatigue life in horizontal axis wind turbine blades,” in 35th Wind Energy Symposium, 9-13 January 2017, Grapevine, Texas, pp. 1–11.
  • Ni, Z., T. C. Su, and M. Dhanak. 2018. An empirically-based model for the lift coefficients of twisted airfoils with leading-edge tubercles. AIP Advances 8 (4–045123):1–16. doi:10.1063/1.5023103.
  • Paula, A. 2016. The airfoil thickness effects on wavy leading edge phenomena at low reynolds number regime. University of Sao Paulo, Brazil.
  • Pérez-Torró, R., and J. W. Kim. 2017. A large-eddy simulation on a deep-stalled aerofoil with a wavy leading edge. Journal of Fluid Mechanics 813:23–52. doi:10.1017/jfm.2016.841.
  • Reddy, C. J., and A. Sathyabhama. 2023. Comparative study on the effect of leading edge protuberance of different shapes on the aerodynamic performance of two distinct airfoils. Journal of Applied Fluid Mechanics 16 (1):157–77.
  • Rezaeiha, A., H. Montazeri, and B. Blocken. 2019. Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction. Energy 189:116131. doi:10.1016/j.energy.2019.116131.
  • Rinehart, T., S. Medida, T. Kalra, and J. D. Baeder, “RANS simulations of sandia 100 - m wind turbine blade: Effect of leading-edge tubercles,” in 32nd AIAA Applied Aerodynamics Conference, 16-20 June 2014, Atlanta GA, pp. 1–17.
  • Roy, S., B. Das, and A. Biswas. 2023a. A comprehensive review of the application of bio-inspired tubercles on the horizontal axis wind turbine blade. International Journal of Environmental Science and Technology 20 (4):4695–722. doi:10.1007/s13762-021-03784-3.
  • Roy, S., B. Das, and A. Biswas. 2023b. Effect of leading-edge protrusion shapes for passive flow control measure on wind turbine blades. Ocean Engineering 269:113688. doi:10.1016/j.oceaneng.2023.113688.
  • Salunkhe, P. B., and A. M. Pradeep. 2010. Theoretical analysis of rotating stall under static inflow distortion including the effect of tip injection. International Journal of Turbo and Jet Engines 27 (1):39–49. doi:10.1515/TJJ.2010.27.1.39.
  • Salunkhe, P., H. Tang, Y. Zheng, and Y. Wu. 2016. PIV measurement of mildly controlled flow over a straight-wing model. International Journal of Heat and Fluid Flow 62:552–59. doi:10.1016/j.ijheatfluidflow.2016.08.004.
  • Sedighi, H., P. Akbarzadeh, and A. Salavatipour. 2020. Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation. Energy 195:117056. doi:10.1016/j.energy.2020.117056.
  • Sedney, R. 1973. A survey of the effects of small protuberances on boundary-layer flows. AIAA Journal 11 (6):782–92. doi:10.2514/3.50520.
  • Serson, D., J. R. Meneghini, and S. J. Sherwin. 2017. Direct numerical simulations of the flow around wings with spanwise waviness at a very low reynolds number. Computers & Fluids 146:117–24. doi:10.1016/j.compfluid.2017.01.013.
  • Seyhan, M., H. Akbıyık, M. Sarıoğlu, and S. C. Keçecioğlu. 2022. The effect of leading-edge tubercle on a tapered swept-back SD7032 airfoil at a low reynolds number. Ocean Engineering 266:112794. doi:10.1016/j.oceaneng.2022.112794.
  • Shi, W., M. Atlar, and R. Norman. 2017. Detailed flow measurement of the field around tidal turbines with and without biomimetic leading-edge tubercles. Renewable Energy 111:688–707. doi:10.1016/j.renene.2017.04.053.
  • Skillen, A., A. Revell, A. Pinelli, U. Piomelli, and J. Favier. 2015. Flow over a wing with leading-edge undulations. AIAA Journal 53 (2):464–72. doi:10.2514/1.J053142.
  • Sridhar, S., J. Joseph, and J. Radhakrishnan. 2022. Implementation of tubercles on vertical axis wind turbines (VAWTs): An aerodynamic perspective. Sustainable Energy Technology Assessments 52:102109. doi:10.1016/j.seta.2022.102109.
  • Sudhakar, S., N. Karthikeyan, and L. Venkatakrishnan. 2017. Influence of leading edge tubercles on aerodynamic characteristics of a high aspect-ratio UAV. Aerospace Science and Technology 69:281–89. doi:10.1016/j.ast.2017.06.031.
  • Swanson, T. and K. M. Isaac, “Biologically inspired wing leading edge for enhanced wind turbine and aircraft performance,” in 6th AIAA Theoretical Fluid Mechanics Conference, 27 - 30 June 2011, Honolulu, Hawaii, pp. 1–10.
  • Thangarajan, R. V., and D. Velamurali. 2015. Improvement in design of small scale wind turbines by incorporation of tubercles. Journal of Chemistry Pharmaceutical Science 7 (7):285–88.
  • Ul Hassan, S. S., M. T. Javaid, U. Rauf, S. Nasir, A. Shahzad, and S. Salamat. 2023. Systematic investigation of power enhancement of vertical axis wind turbines using bio-inspired leading edge tubercles. Energy 270:126978. doi:10.1016/j.energy.2023.126978.
  • Van Nierop, E. A., S. Alben, and M. P. Brenner. 2008. How bumps on whale flippers delay stall: An aerodynamic model. Physical Review Letters 100 (5):1–4. doi:10.1103/PhysRevLett.100.054502.
  • Veers, P. S., T. D. Ashwill, H. J. Sutherland, D. L. Laird, D. W. Lobitz, D. A. Griffin, J. F. Mandell, W. D. Musial, K. Jackson, M. Zuteck, et al. 2003. Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy. 6(3):245–59. doi:10.1002/we.90.
  • Wang, T., L. H. Feng, and Z. Y. Li. 2021. Effect of leading-edge protuberances on unsteady airfoil performance at low reynolds number. Experiments in Fluids 62 (10):1–13. doi:10.1007/s00348-021-03310-8.
  • Wang, Y. Y., W. R. Hu, and S. D. Zhang. 2015. Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing. Journal of Hydrodynamics 26 (6):912–20. doi:10.1016/S1001-6058(14)60100-1.
  • Watts, P., and F. E. Fish. 2001. The influence of passive, leading edge tubercles on wing performance. Proc. Twelfth Intl. Symp. Unmanned Untethered Submers. Technol, Portsmouth, New Hampshire, 2–9.
  • Wei, Z., T. H. New, and Y. D. Cui. 2015. An experimental study on flow separation control of hydrofoils with leading-edge tubercles at low reynolds number. Ocean Engineering 108:336–49. doi:10.1016/j.oceaneng.2015.08.004.
  • Wei, Z., J. W. A. Toh, I. H. Ibrahim, and Y. Zhang. 2019. Aerodynamic characteristics and surface flow structures of moderate aspect-ratio leading-edge tubercled wings. Fluids European Journal of Mechanics - B/fluids 75:143–52. doi:10.1016/j.euromechflu.2019.01.001.
  • Xie, S., C. L. Archer, N. Ghaisas, and C. Meneveau. 2017. Benefits of collocating vertical-axis and horizontal-axis wind turbines in large wind farms. Wind Energy 20 (1):45–62. doi:10.1002/we.1990.
  • Xu, W., C. Cheng Li, S. Xian Huang, and Y. Wang. 2022. Aerodynamic performance improvement analysis of savonius vertical axis wind turbine utilizing plasma excitation flow control. Energy 239:122133. doi:10.1016/j.energy.2021.122133.
  • Yan, Y., E. Avital, J. Williams, and J. Cui. 2021. Aerodynamic performance improvements of a vertical axis wind turbine by leading-edge protuberance. Journal of Wind Engineering and Industrial Aerodynamics 211:104535. doi:10.1016/j.jweia.2021.104535.
  • Yasuda, T., K. Fukui, K. Matsuo, H. Minagawa, and R. Kurimoto. 2019. Effect of the reynolds number on the performance of a NACA0012 wing with leading edge protuberance at low reynolds numbers. Flow Turbulence Combustion 102 (2):435–55. doi:10.1007/s10494-018-9978-3.
  • Yi-Nan, Z., C. Hui-Jing, and Z. Ming-Ming. 2021. A calculation method for modeling the flow characteristics of the wind turbine airfoil with leading-edge protuberances. Journal of Wind Engineering and Industrial Aerodynamics 212:104613. doi:10.1016/j.jweia.2021.104613.
  • Zadorozhna, D. B., O. Benavides, J. S. Grajeda, S. F. Ramirez, and L. de la Cruz May. 2021. A parametric study of the effect of leading edge spherical tubercle amplitudes on the aerodynamic performance of a 2D wind turbine airfoil at low reynolds numbers using computational fluid dynamics. Energy Reports 7:4184–96. doi:10.1016/j.egyr.2021.06.093.
  • Zhang, Y., H. Cao, X. Liu, and L. Qi. 2022. Effect of the leading-edge protuberances on the aeroacoustic and aerodynamic performances of the wind turbine airfoil. Ocean Engineering 266 (P5):113153. doi:10.1016/j.oceaneng.2022.113153.
  • Zhang, Y. N., H. J. Cao, and M. M. Zhang. 2021. Investigation of leading-edge protuberances for the performance improvement of thick wind turbine airfoil1. Journal of Wind Engineering and Industrial Aerodynamics 217:104736. doi:10.1016/j.jweia.2021.104736.
  • Zhang, M. M., G. F. Wang, and J. Z. Xu. 2013. Aerodynamic control of low-reynolds-number airfoil with leading-edge protuberances. AIAA Journal 51 (8):1960–71. doi:10.2514/1.J052319.
  • Zhang, M. M., G. F. Wang, and J. Z. Xu. 2014. Experimental study of flow separation control on a low-re airfoil using leading-edge protuberance method. Experiments in Fluids 55 (4). doi:10.1007/s00348-014-1710-z.
  • Zhang, R.-K., and J.-Z. Wu. 2011. Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge. Wind Energy 15 (3):407–24. doi:10.1002/we.479.
  • Zhang, Y., M. Zhang, and C. Cai. 2019. Flow control on wind turbine airfoil affected by the surface roughness using leading-edge protuberance. Ournal of Renewable and Sustainable Energy 11–06330 (6):1–11. doi:10.1063/1.5116414.
  • Zhang, Y. N., M. M. Zhang, C. Cai, and J. Z. Xu. 2020. Aerodynamic load control on a dynamically pitching wind turbine airfoil using leading-edge protuberance method. Acta Mechanica Sinica Xuebao 36 (2):275–89. doi:10.1007/s10409-020-00939-2.
  • Zhang, Y., M. Zhao, and M. Zhang. 2023. Research on the aerodynamic performance of an airfoil. Ocean Engineering 280:114615. doi:10.1016/j.oceaneng.2023.114615.
  • Zhao, M., M. Zhang, and J. Xu. 2017. Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances. Engineering Applications of Computational Fluid Mechanics 11 (1):193–209. doi:10.1080/19942060.2016.1277165.
  • Zhao, M., Y. Zhao, and Z. Liu. 2020a. Dynamic mode decomposition analysis of flow characteristics of an airfoil with leading edge protuberances. Aerospace Science and Technology 98:1–13. doi:10.1016/j.ast.2020.105684.
  • Zhao, M., Y. Zhao, and Z. Liu. 2020b. Dynamic mode decomposition analysis of flow characteristics of an airfoil with leading edge protuberances. Aerospace Science and Technology 98:105684. doi:10.1016/j.ast.2020.105684.
  • Zhong, J., J. Li, and P. Guo. 2017. Effects of leading-edge rod on dynamic stall performance of a wind turbine airfoil. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 231 (8):753–69. doi:10.1177/0957650917718453.
  • Zverkov, I., B. Zanin, and V. Kozlov. 2008. Disturbances growth in boundary layers on classical and wavy surface wings. AIAA Journal 46 (12):3149–58. doi:10.2514/1.37562.