51
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sensitivity analysis of geometrical parameters of supercritical water in twisted spiral tubes

, ORCID Icon &
Pages 3840-3860 | Received 17 Nov 2023, Accepted 01 Feb 2024, Published online: 13 Mar 2024

References

  • Ashley, S. F., B. A. Lindley, G. T. Parks, W. J. Nuttall, R. Gregg, K. W. Hesketh, U. Kannan, P. D. Krishnani, B. Singh, A. Thakur, et al. 2014. Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems. Annals of Nuclear Energy 69:314–30. doi:10.1016/j.anucene.2014.01.042.
  • Behzadnia, H., H. Jin, M. Najafian, and M. Hatami. 2021. Geometry optimization for a rectangular corrugated tube in Supercritical Water Reactors (SCWRs) using alumina-water nanofluid as coolant. Energy 221:119850. doi:10.1016/J.ENERGY.2021.119850.
  • Bhadouriya, R., A. Agrawal, and S. V. Prabhu. 2015. Experimental and numerical study of fluid flow and heat transfer in an annulus of inner twisted square duct and outer circular pipe. International Journal of Thermal Sciences 94:96–109. doi:10.1016/j.ijthermalsci.2015.02.019.
  • Cheng, J., Z. Qian, and Q. Wang. 2017. Analysis of heat transfer and flow resistance of twisted oval tube in low Reynolds number flow. International Journal of Heat and Mass Transfer 109:761–77. doi:10.1016/J.IJHEATMASSTRANSFER.2017.02.061.
  • Fan, C., S. Guo, and H. Jin. 2019. Numerical study on coal gasification in supercritical water fluidized bed and exploration of complete gasification under mild temperature conditions. Chemical Engineering Science 206:134–45. doi:10.1016/j.ces.2019.05.041.
  • Fokeer, S., I. Lowndes, and S. Kingman. 2009. An experimental investigation of pneumatic swirl flow induced by a three lobed helical pipe. International Journal of Heat and Fluid Flow 30 (2):369–79. doi:10.1016/j.ijheatfluidflow.2008.12.004.
  • Garoosi, F., F. Hoseininejad, and M. Mehdi Rashidi. 2016. Numerical study of heat transfer performance of nanofluids in a heat exchanger. Applied Thermal Engineering 105:436–55. doi:10.1016/j.applthermaleng.2016.03.015.
  • Haicai, L., B. Qincheng, G. Chen, Y. Zhang, and L. Deng. 2020. Experimental study on heat transfer in vertical cooling tube cooled by downward flow in the passive heat removal system of SCWR. Applied Thermal Engineering 179:115680. doi:10.1016/J.APPLTHERMALENG.2020.115680.
  • Hao, X., X. Peixing, H. Suo, and L. Guo. 2020. Numerical investigation of flow and heat transfer of supercritical water in the water-cooled wall tube. International Journal of Heat and Mass Transfer 148:119084. doi:10.1016/j.ijheatmasstransfer.2019.119084.
  • Huang, X., Q. Wang, Z. Song, Y. Yin, and H. Wang. 2020. Heat transfer characteristics of supercritical water in horizontal double-pipe. Applied Thermal Engineering 173:115191. doi:10.1016/j.applthermaleng.2020.115191.
  • Lemmon, E. W., M. L. Huber, and M. O. McLinden. 2010a. Physical and Chemical Properties.
  • Lemmon, E. W., M. L. Huber, and M. O. McLinden. 2010b. Physical and Chemical Properties.
  • Li, H. B., M. Zhao, Z. X. Hu, Y. Zhang, and F. Wang. 2018. Experimental study of supercritical water heat transfer deteriorations in different channels. Annals of Nuclear Energy 119:240–56. doi:10.1016/j.anucene.2018.05.009.
  • Mackolil, J., and B. Mahanthesh. 2021a. Inclined magnetic field and nanoparticle aggregation effects on thermal marangoni convection in Nanoliquid: A sensitivity analysis. Chinese Journal of Physics 69:24–37. doi:10.1016/J.CJPH.2020.11.006.
  • Mackolil, J., and B. Mahanthesh. 2021b. Sensitivity analysis of marangoni convection in TiO2–EG Nanoliquid with nanoparticle aggregation and temperature-dependent surface tension. Journal of Thermal Analysis and Calorimetry 143 (3):2085–98. doi:10.1007/s10973-020-09642-7.
  • Najafian, M., A. Esmaeili, A. Nikkhoo, H. Jin, and M. R. Soufivand. 2022. Numerical study of heat transfer and fluid flow of supercritical water in twisted spiral tubes. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (3):6433–55. doi:10.1080/15567036.2022.2098421.
  • Odu, S. O., P. Koster, A. G. J. Van Der Ham, M. A. Van Der Hoef, and S. R. A. Kersten. 2016. Heat transfer to sub- and supercritical water flowing upward in a vertical tube at low mass fluxes: Numerical analysis and experimental validation. Industrial and Engineering Chemistry Research 55 (51):13120–31. doi:10.1021/acs.iecr.6b03268.
  • Pereira, J. C. F., and J. M. M. Sousa. 1993. Finite volume calculations of self-sustained oscillations in a grooved channel. Journal of Computational Physics 106 (1):19–29. doi:10.1006/jcph.1993.1087.
  • Pioro, I., and S. Mokry. 2011. Heat Transfer - Theoretical Analysis, Experimental Investigations and Industrial Systems 573–592.
  • Rahman, M. M., J. Dongxu, M. S. Beni, H. C. Hei, H. Weidong, and J. Zhao. 2016. Supercritical water heat transfer for nuclear reactor applications: a review. Annals of Nuclear Energy 97:53–65. doi:10.1016/J.ANUCENE.2016.06.022.
  • Rashidi, M. M., M. Nasiri, M. S. Shadloo, and Z. Yang. 2017. Entropy generation in a circular tube heat exchanger using nanofluids: Effects of different modeling approaches. Heat Transfer Engineering 38 (9):853–66. doi:10.1080/01457632.2016.1211916.
  • Rowinski, M. K., J. Zhao, T. John White, and Y. Chai Soh. 2017. Numerical investigation of supercritical water flow in a vertical pipe under axially non-uniform heat flux. Progress in Nuclear Energy 97:11–25. doi:10.1016/j.pnucene.2016.12.009.
  • Su, Y., K. S. Chaudri, W. Tian, G. Su, and S. Qiu. 2014. Optimization study for thermal efficiency of supercritical water reactor nuclear power plant. Annals of Nuclear Energy 63:541–47. doi:10.1016/j.anucene.2013.08.023.
  • Tang, X., X. Dai, and D. Zhu. 2015. Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube. International Journal of Heat and Mass Transfer 90:523–41. doi:10.1016/j.ijheatmasstransfer.2015.06.068.
  • Vahedi, S. M., A. H. Pordanjani, A. Raisi, and A. J. Chamkha. 2019. Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge. The European Physical Journal Plus 134 (3):1–21. doi:10.1140/EPJP/I2019-12537-X.
  • Wang, C. Y. 2003. Exact solutions of the steady-state navier-stokes equations. doi:10.1146/ANNUREV.FL.23.010191.001111.
  • Wilcox, D. C. 1998. Turbulence Modeling for CFD.
  • Yu, J., J. Chen, M. Xiaoguang, Y. Jiang, X. Fan, and Z. Zhu. 2021. Study on flow and heat transfer characteristics for propane in twisted oval and the two-start twisted helically wound tube. Advances in Mechanical Engineering 13 (12):168781402110670. doi:10.1177/16878140211067025/ASSET/IMAGES/LARGE/10.1177_16878140211067025-FIG20.JPEG.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.