71
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Yield and distribution of products of lignin liquefaction catalyzed by molybdenum-vanadium-phosphorus heteropolyacids

, , , , &
Pages 4149-4164 | Received 01 Oct 2023, Accepted 07 Dec 2023, Published online: 17 Mar 2024

References

  • Al-Hussaini, L., F. Launay, and E. Galvez. 2020. Vanadium-substituted phosphomolybdic acids for the aerobic cleavage of lignin models—mechanistic aspect and extension to lignin. Materials 13 (4):812. doi:10.3390/ma13040812.
  • Ambursa, M. M., J. C. Juan, Y. Yahaya, Y. H. Taufiq-Yap, Y.-C. Lin, and H. V. Lee. 2021. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts. Renewable and Sustainable Energy Reviews 138:110667. doi:10.1016/j.rser.2020.110667.
  • Atlamsani, A., J. M. Bregeault, and M. Ziyad. 1993. Oxidation of 2-methylcyclohexanone and cyclohexanone by dioxygen catalyzed by vanadium-containing heteropolyanions. The Journal of Organic Chemistry 58 (21):5663–5665. doi:10.1021/jo00073a026.
  • Blöchl, P. E. 1994. Projector augmented-wave method. Physical Review B 50 (24):17953–17979. doi:10.1103/PhysRevB.50.17953.
  • Chen, L., X. Wang, H. Yang, Q. Lu, D. Li, Q. Yang, and H. Chen. 2015. Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and py-GC/MS. Journal of Analytical and Applied Pyrolysis 113:499–507. doi:10.1016/j.jaap.2015.03.018.
  • Du, F., Y. Li, X. Xian, B.-Z. Li, P. Tang, B. Lu, and J. Lai. 2019. Liquefaction behavior of lignin in different alcohol solvents under the catalysis of heteropolyacid salt. Energy & Fuels 33 (8):7366–7376. doi:10.1021/acs.energyfuels.9b01285.
  • Du, F., Y. Li, X. Xian, B. Li, P. Tang, B. Lu, and J. Lai. 2019. Liquefaction behavior of lignin in different alcohol solvents under the catalysis of heteropolyacid salt. Energy & Fuels 33 (8):7366–7376. doi:10.1021/acs.energyfuels.9b01285.
  • Genel, S., H. Durak, E. D. Durak, H. Güneş, and Y. Genel. 2023. Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation. Renewable Energy 203:20–32. doi:10.1016/j.renene.2022.12.030.
  • Hao, K., L.-L. Zhang, L. Song, H.-Y. Guan, C.-M. Li, T. Liu, Q. Yu, J.-M. Zeng, and Z.-W. Wang. 2020. Highly active Mo-V-based bifunctional catalysts for catalytic conversion of lignin dimer model compounds at room temperature. Inorganic Chemistry Communications 116:107910. doi:10.1016/j.inoche.2020.107910.
  • He, Z., Y. Hou, H. Li, J. Wei, S. Ren, and W. Wu. 2023. Catalytic aerobic oxidation of carbohydrates to formic acid over H5PV2Mo10O40: Rate relationships among catalyst reduction, catalyst re-oxidation and acid-catalyzed reactions and evidence for the Mars-Van Krevelen mechanism. Chemical Engineering Science 280:119055. doi:10.1016/j.ces.2023.119055.
  • Hu, J., D. Shen, R. Xiao, S. Wu, and H. Zhang. 2013. Free-radical analysis on thermochemical transformation of lignin to phenolic compounds. Energy & Fuels 27 (1):285–293. doi:10.1021/ef3016602.
  • Hu, Y., B. Tao, F. Shang, M. Zhou, D. Hao, R. Fan, D. Xia, Y. Yang, A. Pang, and K. Lin. 2020. Thermal decomposition of ammonium perchlorate over perovskite catalysts: Catalytic decomposition behavior, mechanism and application. Applied Surface Science 513:145849. doi:10.1016/j.apsusc.2020.145849.
  • Janik, M. J., R. J. Davis, and M. Neurock. 2005. The relationship between adsorption and solid acidity of heteropolyacids. Catalysis Today 105 (1):134–143. doi:10.1016/j.cattod.2005.04.014.
  • Jiang, Y., L. Yan, H. Yu, Q. Zhang, and Y. Fu. 2016. Mechanism of vanadium-catalyzed selective C–O and C–C cleavage of lignin model compound. ACS Catalysis 6 (7):4399–4410. doi:10.1021/acscatal.6b00239.
  • Kabir, G., and B. H. Hameed. 2017. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renewable and Sustainable Energy Reviews 70:945–967. doi:10.1016/j.rser.2016.12.001.
  • Katahira, R., A. Mittal, K. McKinney, X. Chen, M. P. Tucker, D. K. Johnson, and G. T. Beckham. 2016. Base-catalyzed depolymerization of biorefinery lignins. ACS Sustainable Chemistry & Engineering 4 (3):1474–1486. doi:10.1021/acssuschemeng.5b01451.
  • Kozhevnikov, I. V. 1998. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions. Chemical Reviews 98 (1):171–198. doi:10.1021/cr960400y.
  • Kozhevnikov, I. V. 2003. Heterogeneous catalysis by heteropoly compounds. In Polyoxometalate molecular science, ed. J. J. Borrás-Almenar, E. Coronado, A. Müller, and M. Pope, 351–80. Netherlands, Dordrecht: Springer.
  • Kozhevnikov, I. V. 2007. Sustainable heterogeneous acid catalysis by heteropoly acids. Journal of Molecular Catalysis A: Chemical 262 (1–2):86–92. doi:10.1016/j.molcata.2006.08.072.
  • Kubička, D., N. Kumar, P. Mäki-Arvela, M. Tiitta, V. Niemi, H. Karhu, T. Salmi, and D. Y. Murzin. 2004. Ring opening of decalin over zeolites: II. Activity and selectivity of platinum-modified zeolites. Journal of Catalysis 227 (2):313–27. doi:10.1016/j.jcat.2004.07.015.
  • Kurnia, I., S. Karnjanakom, A. Bayu, A. Yoshida, J. Rizkiana, T. Prakoso, A. Abudula, and G. Guan. 2017. In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites. Fuel Processing Technology 167:730–37. doi:10.1016/j.fuproc.2017.08.026.
  • Lissel, M., H. J. I. D. Wal, and R. Neumann. 1992. Oxidation of activated phenols by dioxygen catalyzed by the H5PV2Mo10O40 heteropolyanion. Tetrahedron Letters 33 (13):1795–98. doi:10.1016/S0040-4039(00)91735-0.
  • Liu, Y., L. Chen, T. Wang, Q. Zhang, C. Wang, J. Yan, and L. Ma. 2015. One-pot catalytic conversion of raw lignocellulosic biomass into gasoline alkanes and chemicals over LiTaMoO6 and Ru/C in aqueous phosphoric acid. ACS Sustainable Chemistry & Engineering 3 (8):1745–1755. doi:10.1021/acssuschemeng.5b00256.
  • Misono, M. 1987. Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catalysis Reviews-Science and Engineering 29 (2–3):269–321. doi:10.1080/01614948708078072.
  • Mizuno, N., W.-B. Han, T. Kudo, and M. Iwamoto. 1996. Direct oxidation of isobutane into methacrylic acid over Cs, Ni, and V-substituted H3PMo12O40 heteropoly compounds. Studies in Surface Science and Catalysis 101:1001–10.
  • Naron, D. R., F. X. Collard, L. Tyhoda, and J. F. Görgens. 2019. Influence of impregnated catalyst on the phenols production from pyrolysis of hardwood, softwood, and herbaceous lignins. Industrial Crops and Products 131:348–356. doi:10.1016/j.indcrop.2019.02.001.
  • Neumann, R., and M. L. Levin. 1991. Selective aerobic oxidative dehydrogenation of alcohols and amines catalyzed by a supported molybdenum-vanadium heteropolyanion salt Na5PMo2V2O40. The Journal of Organic Chemistry 56 (19):5707–5710. doi:10.1021/jo00019a047.
  • Pan, Z.-Q., H.-J. Huang, C.-F. Zhou, X.-F. Xiao, X.-W. He, F.-Y. Lai, and J.-B. Xiong. 2018. Highly efficient conversion of camphor tree sawdust into bio-oil and biochar products by liquefaction in ethanol-water cosolvent. Journal of Analytical and Applied Pyrolysis 136:186–198. doi:10.1016/j.jaap.2018.10.006.
  • Perdew, J. P., K. Burke, and Y. Wang. 1996. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B 54 (23):16533–16539. doi:10.1103/PhysRevB.54.16533.
  • Shatalov, A. A. 2019. Highly efficient hydrolysis of plant hemicelluloses by mixed-addenda keggin-type (mo-V-P)-heteropolyacids in diluted aqueous solution. Carbohydrate Polymers 206:80–85. doi:10.1016/j.carbpol.2018.10.106.
  • Shu, R., R. Li, B. Lin, C. Wang, Z. Cheng, and Y. Chen. 2020. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. Biomass & bioenergy 132:105432. doi:10.1016/j.biombioe.2019.105432.
  • Singh, R., S. Singh, K. D. Trimukhe, K. V. Pandare, K. B. Bastawade, D. V. Gokhale, and A. J. Varma. 2005. Lignin–carbohydrate complexes from sugarcane bagasse: Preparation, purification, and characterization. Carbohydrate Polymers 62 (1):57–66. doi:10.1016/j.carbpol.2005.07.011.
  • Sun, R.-C. 2020. Lignin source and structural characterization. ChemSuschem 13 (17):4174–4174. doi:10.1002/cssc.202001698.
  • Tokarz-Sobieraj, R., R. Grybos, U. Filek, A. Micek-Ilnicka, P. Niemiec, A. Kirpsza, and M. Witko. 2015. Generation of acidic sites in Al, Ga, in salts of molybdenum and tungsten keggin-type heteropolyacids. DFT modeling and catalytic tests. Catalysis Today 257:72–79. doi:10.1016/j.cattod.2015.03.005.
  • Tsigdimos, G. A., and C. J. Hallana. 1968. Molybdovanadophosphoric acids and their Salts.1. Investigation of methods of preparation and characterization. Inorganic Chemistry 7 (3):437–41. doi:10.1021/ic50061a009.
  • Wang, M., and F. Wang. 2019. Catalytic scissoring of lignin into aryl monomers. Advanced Materials 31 (50):e1901866. doi:10.1002/adma.201901866.
  • Zhang, H., C. Yang, S. Zhao, T. Wang, and W. Zhu. 2021. Comparison in thermal stability and catalytic performance of H4PMo11VO40 heteropolyacid supported on mesoporous and macroporous silica materials. Journal of Chemical Research 45 (1–2):60–67. doi:10.1177/1747519820925997.
  • Zhang, J., M. Sun, X. Liu, and Y. Han. 2014. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields. Catalysis Today 233:77–82. doi:10.1016/j.cattod.2013.12.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.