59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental investigation of features of CI engine fueled with blends of camphor oil with biomass waste simarouba glauca oil

, & ORCID Icon
Pages 3884-3901 | Received 10 Mar 2023, Accepted 18 Feb 2024, Published online: 13 Mar 2024

References

  • Aghbashlo, M., M. Tabatabaei, P. Mohammadi, N. Pourvosoughi, A. M. Nikbakht, and S. A. H. Goli. 2015. Improving exergetic and sustainability parameters of a Di diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. Energy Conversion and Management 105:328–37. doi:10.1016/j.enconman.2015.07.075.
  • Aisosa Oni, B., S. Eshorame Sanni, M. Daramola, and A. Victoria Olawepo. 2021. Effects of oxy-acetylation on performance, combustion and emission characteristics of botryococcus braunii microalgae biodiesel-fuelled CI engines. Fuel 296:120675. doi:10.1016/j.fuel.2021.120675.
  • Ashok, B., K. Nanthagopal, B. Chaturvedi, S. Sharma, and R. Thundil Karuppa Raj. 2018. A comparative assessment on common rail direct injection (CRDI) engine characteristics using low viscous biofuel blends. Applied Thermal Engineering 145:494–506. doi:10.1016/j.applthermaleng.2018.09.069.
  • Banapurmath, N. R., N. M. Gireesh, Y. H. Basavarajappa, R. S. Hosmath, V. S. Yaliwal, A. Pai, K. Gopal Navale, P. Jog, and P. G. Tewari. 2015. Effect of hydrogen addition to CNG in a biodiesel-operated dual-fuel engine. Int Journal Sustain Eng 8 (6):332–40. doi:10.1080/19397038.2014.963001.
  • Bharathy, S., B. Gnanasikamani, and K. Radhakrishnan Lawrence. 2019. Investigation on the use of plastic pyrolysis oil as alternate fuel in a direct injection diesel engine with titanium oxide nanoadditive. Environmental Science and Pollution Research 26:10319–32. doi:10.1007/s11356-019-04293-0.
  • Bhatti, S. S., S. Verma, and S. K. Tyagi. 2019. Energy and exergy based performance evaluation of variable compression ratio spark ignition engine based on experimental work. Thermal Science and Engineering Progress 9:332–39. doi:10.1016/j.tsep.2018.12.006.
  • Bragadeshwaran, A., N. Kasianantham, S. Ballusamy, K. R. Tarun, A. P. Dharmaraj, and M. U. Kaisan. 2018. Experimental study of methyl tert-butyl ether as an oxygenated additive in diesel and calophyllum inophyllum methyl ester blended fuel in CI engine. Environmental Science and Pollution Research 25:33573–90. doi:10.1007/s11356-018-3318-y.
  • Calik, A. T., O. O. Taskiran, and R. Mehdiyev. 2018. Numerical investigation of twin swirl application in diesel engine combustion. Fuel 224:101–10. doi:10.1016/j.fuel.2018.03.049.
  • Channapattana, S. V., A. A. Pawar, and P. G. Kamble. 2017. Optimisation of operating parameters of DI-CI engine fueled with second generation bio-fuel and development of ANN based prediction model. Applied Energy 187:84–95. doi:10.1016/j.apenergy.2016.11.030.
  • Chaudhary, V. 2022. Influence of diethyl ether on exergy and emission characteristics of diesel engine with waste cooking oil methyl ester. International Journal of Environmental Science and Technology 19:4931–46. doi:10.1007/s13762-021-03347-6.
  • Chaudhary, A., S. H. Panchal, A. Surana, M. Sreekanth, S. Ismail, and M. Feroskhan. 2022. Performance, emission and combustion characteristics of various biodiesel blends. Journal of Thermal Analysis and Calorimetry 147:2455–79. doi:10.1007/s10973-021-10642-4.
  • Deivajothi, P., V. Manieniyan, and S. Sivaprakasam. 2018. An impact of ethyl esters of groundnut acid oil (vegetable oil refinery waste) used as emerging fuel in DI diesel engine. Alexandria Engineering Journal 57:2215–23. doi:10.1016/j.aej.2017.09.003.
  • Devan, P. K., and N. V. Mahalakshmi. 2009a. A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil–eucalyptus oil blends. Applied Energy 86 (5):675–80. doi:10.1016/j.apenergy.2008.07.008.
  • Devan, P. K., and N. V. Mahalakshmi. 2009b. Utilization of unattended methyl ester of paradise oil as fuel in diesel engine. Fuel 88:1828–33. doi:10.1016/j.fuel.2009.04.025.
  • Dey, P., and S. Ray. 2021. Comprehensive assessment of sustainable low-cost waste-vegetable-oil-based blend as a diesel substitute. Clean Techn Environ Policy 23:1521–36. doi:10.1007/s10098-021-02045-8.
  • Dinesha, P., V. Nayak, and P. Mohanan. 2014. Effect of oxygen enrichment on the performance, combustion, and emission of single cylinder stationary CI engine fueled with cardanol diesel blends. Journal of Mechanical Science and Technology 28:2919–24. doi:10.1007/s12206-014-0644-y.
  • Dubey, P., and R. Gupta. 2018. Influences of dual bio-fuel (Jatropha biodiesel and turpentine oil) on single cylinder variable compression ratio diesel engine. Renew Energy 115:1294–302. doi:10.1016/j.renene.2017.09.055.
  • EL-Seesy, A. I., M. S. Waly, Z. He, H. M. El-Batsh, A. Nasser, and R. M. El-Zoheiry. 2021. Influence of quaternary combinations of biodiesel/methanol/n-octanol/diethyl ether from waste cooking oil on combustion, emission, and stability aspects of a diesel engine. Energy Conversion and Management 240:114268. doi:10.1016/j.enconman.2021.114268.
  • Elumalai, P. V., K. Annamalai, and B. Dhinesh. 2019. Effects of thermal barrier coating on the performance, combustion and emission of DI diesel engine powered by biofuel oil–water emulsion. Journal of Thermal Analysis and Calorimetry 137:593–605. doi:10.1007/s10973-018-7948-6.
  • Erol, D., M. Kadir Yeşilyurt, H. Yaman, and B. Doğan. 2023. Evaluation of the use of diesel-biodiesel-hexanol fuel blends in diesel engines with exergy analysis and sustainability index. Fuel 337:126892. doi:10.1016/J.FUEL.2022.126892.
  • Fadhil, A. B., A. M. Aziz, and M. H. Al-Tamer. 2016. Biodiesel production from Silybum marianum L. seed oil with high FFA content using sulfonated carbon catalyst for esterification and base catalyst for transesterification. Energy Conversion and Management 108:255–65. doi:10.1016/j.enconman.2015.11.013.
  • Gurusamy, M., and C. Ponnusamy. 2023. Assessment of engine characteristics of compression ignition engine fuelled with Polanga oil and camphor oil blend. International Journal of Environmental Science and Technology 21 (1):603–16. doi:10.1007/s13762-023-04949-y.
  • Hafiz, N. M., M. R. A. Mansor, and W. M. F. Wan Mahmood. 2018. Simulation of the combustion process for a CI hydrogen engine in an argon-oxygen atmosphere. International Journal of Hydrogen Energy 43:11286–97. doi:10.1016/j.ijhydene.2018.05.022.
  • Hoang, A. T., D. Balasubramanian, I. P. Venugopal, V. Rajendran, D. T. Nguyen, K. R. Lawrence, X. P. Nguyen, and M. A. Kalam. 2023. A feasible and promising approach for diesel engine fuelled with a blend of biodiesel and low-viscosity cinnamon oil: A comprehensive analysis of performance, combustion, and exergy. Journal Clean Product 401:136682. doi:10.1016/j.jclepro.2023.136682.
  • Hosseini, S. H., A. Taghizadeh-Alisaraei, B. Ghobadian, and A. Abbaszadeh-Mayvan. 2017. Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends. Renew Energy 111:201–13. doi:10.1016/j.renene.2017.04.013.
  • Ibrahim, S. M. A., K. A. Abed, M. S. Gad, and H. M. Abu Hashish. 2020. Comparison of different methods for producing bio oil from Egyptian jatropha seeds. Biofuels 11:643–54. doi:10.1080/17597269.2017.1387748.
  • Imdadul, H. K., M. M. Rashed, M. M. Shahin, H. H. Masjuki, M. A. Kalam, M. Kamruzzaman, and H. K. Rashedul. 2017. Quality improvement of biodiesel blends using different promising fuel additives to reduce fuel consumption and NO emission from CI engine. Energy Conversion and Management 138:327–37. doi:10.1016/j.enconman.2017.01.077.
  • Jeevanantham, A. K., D. Madhusudan Reddy, N. Goyal, D. Bansal, G. Kumar, and A. Kumar. 2020. Experimental study on the effect of cetane improver with turpentine oil on CI engine characteristics. Fuel 262:116551. doi:10.1016/j.fuel.2019.116551.
  • Jeyakumar, N., D. Balasubramanian, M. Sankaranarayanan, K. Karuppasamy, M. Wae-Hayee, Le VV, et al. 2023. Using pithecellobium dulce seed-derived biodiesel combined with groundnut shell nanoparticles for diesel engines as a well-advised approach toward sustainable waste-to-energy management. Fuel 337:127164. doi:10.1016/j.fuel.2022.127164.
  • John, C. B., and S. Antony Raja. 2020. Analysis of combustion, emission and performance attributes of hemp biodiesel on a compression ignition engine. World Rev Science Technology Sustain Dev 16 (2):169–83. doi:10.1504/WRSTSD.2020.109724.
  • Juknelevicius, R., S. Szwaja, M. Pyrc, and M. Gruca. 2019. Influence of hydrogen co-combustion with diesel fuel on performance, smoke and combustion phases in the compression ignition engine. International Journal of Hydrogen Energy 44:19026–34. doi:10.1016/j.ijhydene.2018.10.126.
  • Kanthasamy, P., V. A. M. Selvan, and P. Shanmugam. 2020. Investigation on the performance, emissions and combustion characteristics of CRDI engine fueled with tallow methyl ester biodiesel blends with exhaust gas recirculation. Journal of Thermal Analysis and Calorimetry 141:2325–33. doi:10.1007/s10973-020-09770-0.
  • Karagoz, M., C. Uysal, U. Agbulut, and S. Saridemir. 2020. Energy, exergy, economic and sustainability assessments of a compression ignition diesel engine fueled with tire pyrolytic oil−diesel blends. Journal Clean Product 264:121724. doi:10.1016/j.jclepro.2020.121724.
  • Karunamurthy, K., A. A. Janvekar, P. L. Palaniappan, V. Adhitya, T. T. K. Lokeswar, and J. Harish. 2023. Prediction of IC engine performance and emission parameters using machine learning: A review. Journal of Thermal Analysis and Calorimetry 2023 (9):3155–77. doi:10.1007/s10973-022-11896-2.
  • Kasiraman, G., B. Nagalingam, and M. Balakrishnan. 2012. Performance, emission and combustion improvements in a direct injection diesel engine using cashew nut shell oil as fuel with camphor oil blending. Energy 47:116–24. doi:10.1016/j.energy.2012.09.022.
  • Khoobbakht, G., A. Akram, M. Karimi, and G. Najafi. 2016. Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a di diesel engine. Applied Thermal Engineering 99:720–29. doi:10.1016/j.applthermaleng.2016.01.022.
  • Korba, P., O. Balli, H. Caliskan, S. Al-Rabeei, and U. Kale. 2023. Energy, exergy, economic, environmental, and sustainability assessments of the CFM56-3 series turbofan engine used in the aviation sector. Energy 269:126765. doi:10.1016/j.energy.2023.126765.
  • Krishnamoorthy, V., R. Dhanasekaran, D. Rana, S. Saravanan, and B. Rajesh Kumar. 2018. A comparative assessment of ternary blends of three bio-alcohols with waste cooking oil and diesel for optimum emissions and performance in a CI engine using response surface methodology. Energy Conversion and Management 156:337–57. doi:10.1016/j.enconman.2017.10.087.
  • Kumar, A. N., B. Ashok, K. Nanthagopal, H. C. Ong, M. J. Geca, J. Victor, R. Vignesh, A. K. Jeevanantham, C. Kannan, P. S. Kishore, et al. 2020. Experimental analysis of higher alcohol–based ternary biodiesel blends in CI engine parameters through multivariate and desirability approaches. Biomass Convers. Biorefinery 12(5):1525–40. doi:10.1007/s13399-020-01134-w.
  • Kumar, N. M., H. Bhavsar, G. Sakthivel, M. M. Feroskhan, and K. Karunamurthy. 2021. Performance and emission characteristics of dual fuel engine using biodiesels. IOP Conference Series: Earth and Environmental Science 850 (1):850. doi:10.1088/1755-1315/850/1/012005.
  • Kumbhar, V. S., A. Pandey, A. Varghese, and V. Patil. 2021. Comparative assessment of performance, combustion, and emission of compression ignition engine fuelled with different generations of biodiesel. Int Journal Sustain Eng 1–15. doi:10.1080/19397038.2021.1943043.
  • Mahalingam, A., Y. Devarajan, S. Radhakrishnan, S. Vellaiyan, and B. Nagappan. 2018. Emissions analysis on mahua oil biodiesel and higher alcohol blends in diesel engine. Alexandria Engineering Journal 57:2627–31. doi:10.1016/j.aej.2017.07.009.
  • Mahla, S. K., S. M. S. Ardebili, M. Rabeti, G. Goga, A. Dhir, and H. Sharma. 2022. Performance and exhaust emissions analysis of a diesel engine running on diesel/diethyl ether/biogas as a green fuel. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 44 (4):9395–411. doi:10.1080/15567036.2022.2133194.
  • Mansor, M. R. A., and M. Shioji. 2016. Investigation of the combustion process of hydrogen jets under argon-circulated hydrogen-engine conditions. Combustion & Flame 173:245–57. doi:10.1016/j.combustflame.2016.07.032.
  • Mao, G., K. Shi, C. Zhang, J. Li, S. Chen, and P. Wang. 2020. Biodiesel fuel from chlorella vulgaris and effects of its low-level blends on the performance, emissions, and combustion characteristics of a nonroad diesel engine. Journal of Energy Engineering 146:04020016. doi:10.1061/(asce)ey.1943-7897.0000668.
  • Mathalai Sundaram, C., K. N. Balan, T. Arunkumar, S. Ganesan, and A. Rameshbabu. 2019. Emission study on the outcome of DMC on neem bio-diesel-ignited diesel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects :1–10. doi:10.1080/15567036.2019.1691683.
  • Mathan Raj, V., L. R. Ganapathy Subramanian, S. Thiyagarajan, and V. Edwin Geo. 2018. Effects of minor addition of aliphatic (1-pentanol) and aromatic (benzyl alcohol) alcohols in Simarouba glauca-diesel blend fuelled CI engine. Fuel 234:934–43. doi:10.1016/j.fuel.2018.07.122.
  • Mat Taib, N., M. R. Abu Mansor, and W. M. Faizal Wan Mahmood. 2020. Simulation of hydrogen combustion in neon-oxygen compression ignition engine. CFD Lett 12 (12):1–16. doi:10.37934/cfdl.12.12.116.
  • Ma B., A. Yao, C. Yao, T. Wu, B. Wang, J. Gao, and C. Chen. 2020. Exergy loss analysis on diesel methanol dual fuel engine under different operating parameters. Applied Energy 261:114483. doi:10.1016/j.apenergy.2019.114483.
  • Meisami, F., and H. Ajam. 2015. Energy, exergy and economic analysis of a diesel engine fueled with castor oil biodiesel. International Journal of Engine Research 16:691–702. doi:10.1177/1468087415576609.
  • Muthukumar, K., and G. Kasiraman. 2023. Downcycling of one-time used plastic waste to DICI engine combustion energy through pyrolysis with less NOx emission. Process Safety and Environmental Protection 175:744–52. doi:10.1016/j.psep.2023.05.097.
  • Nalgundwar, A., B. Paul, and S. K. Sharma. 2016. Comparison of performance and emissions characteristics of di CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel 173:172–79. doi:10.1016/j.fuel.2016.01.022.
  • Panigrahi, N. 2018. Energy and exergy analysis of a CI engine fuelled with polanga oil methyl ester. Energy & Environment 29:1155–73. doi:10.1177/0958305X18776544.
  • Panigrahi, N., M. K. Mohanty, S. R. Mishra, and R. C. Mohanty. 2018. Energy and exergy analysis of a diesel engine fuelled with diesel and simarouba biodiesel blends. Journal Inst Eng Ser C 99 (1):9–17. doi:10.1007/s40032-016-0335-9.
  • Panithasan, M. S., D. Gopalakichenin, G. Venkadesan, and S. Veeraraagavan. 2019. Impact of rice husk nanoparticle on the performance and emission aspects of a diesel engine running on blends of pine oil-diesel. Environmental Science and Pollution Research 26:282–91. doi:10.1007/s11356-018-3601-y.
  • Pathak, S. K., A. Nayyar, and V. Goel. 2021. Optimization of EGR effects on performance and emission parameters of a dual fuel (diesel + CNG) CI engine: An experimental investigation. Fuel 291:120183. doi:10.1016/j.fuel.2021.120183.
  • Prabakaran, B., and D. Viswanathan. 2018. Experimental investigation of effects of addition of ethanol to bio-diesel on performance, combustion and emission characteristics in CI engine. Alexandria Engineering Journal 57 (1):383–89. doi:10.1016/j.aej.2016.09.009.
  • Prabhu, A., M. V. Ramanan, J. Jayaprabakar, and V. Harish. 2019. Experimental investigation of emission characteristics on ricebran biodiesel–alcohol blends in a diesel engine. International Journal of Ambient Energy (10):1123–28. doi:10.1080/01430750.2019.1586768.
  • Pradeep, P., and M. Senthilkumar. 2021. Simultaneous reduction of emissions as well as fuel consumption in CI engine using water and nanoparticles in diesel - biodiesel blend. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 43 (12):1500–10. doi:10.1080/15567036.2019.1674958.
  • Prasad, A., S. R, A. Teklemariam, D. Tafesse, M. Tufa, and B. H. Bejaxhin. 2023. Influence of nano additives on performance and emissions characteristics of a diesel engine fueled with watermelon methyl ester. Journal Therm. Eng 9:395–400. doi:10.18186/thermal.1285915.
  • Qian, Z. Q., and X. C. Lu. 2006. Characteristics of HCCI engine operation for additives, EGR, and intake charge temperature while using iso-octane as a fuel. Journal of Zhejiang University. Science 7:252–58. doi:10.1631/jzus.2006.AS0252.
  • Rai, R. K., and R. R. Sahoo. 2022. Effect of CNT and Al2O3-CNT hybrid nano-additive in water-emulsified fuels on DICI engine energetic and exergetic performances. Journal of Thermal Analysis and Calorimetry 147:3577–89. doi:10.1007/s10973-021-10746-x.
  • Rajesh Kumar, B., and S. Saravanan. 2016. Use of higher alcohol biofuels in diesel engines: A review. Renewable and Sustainable Energy Reviews 60:84–115. doi:10.1016/j.rser.2016.01.085.
  • Ramalingam, K., A. Kandasamy, D. Balasubramanian, M. Palani, T. Subramanian, E. G. Varuvel, and K. Viswanathan. 2020. Forcasting of an ANN model for predicting behaviour of diesel engine energised by a combination of two low viscous biofuels. Environmental Science and Pollution Research 27 (20):24702–22. doi:10.1007/s11356-019-06222-7.
  • Raman, R., and N. Kumar. 2, 2020. Performance and emission characteristics of twin cylinder diesel engine fueled with mahua biodiesel and DEE. Transportation Engineering 2:100024. doi:10.1016/j.treng.2020.100024.
  • Rangabashiam, D., H. Suresh Babu Rao, G. Subbiah, and M. Vinayagam. 2021. Study of annona squamosa as alternative green power fuel in diesel engine. Biomass Convers. Biorefinery 13 (4):3199–208. doi:10.1007/s13399-021-01347-7.
  • Reang, N. M., S. Dey, J. Debbarma, and M. Deb. 2022. Effect of linseed methyl ester and diethyl ether on the performance–emission analysis of a CI engine based on Taguchi-Fuzzy optimisation. International Journal of Ambient Energy 43:471–85. doi:10.1080/01430750.2019.1653969.
  • S, N., A. Afzal, V. SH, A. Ü, A. A. Alahmadi, A. C. Gowda, M. Alwetaishi, S. Shaik, and A. T. Hoang. 2023. Poultry fat biodiesel as a fuel substitute in diesel-ethanol blends for DI-CI engine: Experimental, modeling and optimization. Energy 270:126826. doi:10.1016/j.energy.2023.126826.
  • Sakthivel, R., K. Ramesh, P. M. Shameer, and R. Purnachandran. 2019. A complete analytical characterization of products obtained from pyrolysis of wood barks of calophyllum inophyllum. Waste and Biomass Valorization 10:2319–33. doi:10.1007/s12649-018-0236-7.
  • Şanli B, G., E. Uludamar, and Ö. M. 2019. Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel 258:258. doi:10.1016/j.fuel.2019.116116.
  • Saravanan, C. G., K. Raj Kiran, M. Vikneswaran, P. Rajakrishnamoorthy, and S. P. R. Yadav. 2020. Impact of fuel injection pressure on the engine characteristics of CRDI engine powered by pine oil biodiesel blend. Fuel 264:116760. doi:10.1016/j.fuel.2019.116760.
  • Sarıkoç, S., İ. Örs, and S. Ünalan. 2020. An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends. Fuel 268. doi:10.1016/j.fuel.2020.117321.
  • Sarkar, A., and U. K. Saha. 2020. Energetic and exergetic analyses of a dual-fuel diesel engine run on preheated intake biogas-air mixture and oxygenated pilot fuels. Journal of Energy Engineering 146:04020046. doi:10.1061/(asce)ey.1943-7897.0000689.
  • Sathish T., Ü. Ağbulut, S. M. George, K. Ramesh, R. Saravanan, K. L. Roberts, P. Sharma, M. Asif, and A. T. Hoang. 2023. Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils. Energy 275:127397. doi:10.1016/j.energy.2023.127397.
  • Saxena, V., N. Kumar, and V. K. Saxena. 2022. Combustion, performance and emissions of acacia concinna biodiesel blends in a diesel engine with variable specific heat ratio. Journal of Thermal Analysis and Calorimetry 147:1281–98. doi:10.1007/s10973-020-10483-7.
  • Schirmer, W. N., M. A. Gauer, E. Tomaz, P. R. P. Rodrigues, S. N. M. De Souza, L. I. Chaves, L. Villetti, L. Z. Olanyk, and A. R. Cabral. 2016. Power generation and gaseous emissions performance of an internal combustion engine fed with blends of soybean and beef tallow biodiesel. Environmental Technology (United Kingdom) 37 (12):1480–89. doi:10.1080/09593330.2015.1119202.
  • Seela, C. R., B. Ravi Sankar, and D. Sai Kiran. 2017. Influence of biodiesel and its blends on CI engine performance and emissions: A review. Biofuels 8:163–79. doi:10.1080/17597269.2016.1215069.
  • Sharma, P., and A. Dhar. 2018. Effect of hydrogen supplementation on engine performance and emissions. International Journal of Hydrogen Energy 43:7570–80. doi:10.1016/j.ijhydene.2018.02.181.
  • Singh, P., S. R. Chauhan, and V. Goel. 2018. Assessment of diesel engine combustion, performance and emission characteristics fuelled with dual fuel blends. Renew Energy 125:501–10. doi:10.1016/j.renene.2018.02.105.
  • Singh, A., A. K. Choudhary, and S. Sinha. 2023. An investigation of performance and emissions of diesel engine using heterogeneous catalyst jatropha biodiesel: A sustainable Model using Taguchi and response surface methodology. Journal Energy Resour Technol Trans ASME 145 (2):1–16. doi:10.1115/1.4054787.
  • Singh, A., and S. Singh. 2021. Impact of biodiesel–diesel and diethyl ether blends on the performance and emissions of a dual fuel diesel engine. Journal Inst Eng Ser C 102 (3):705–11. doi:10.1007/s40032-021-00685-9.
  • Subramanian, B., and V. Thangavel. 2020. Experimental investigations on performance, emission and combustion characteristics of diesel-hydrogen and diesel-HHO gas in a dual fuel CI engine. International Journal of Hydrogen Energy 45:25479–92. doi:10.1016/j.ijhydene.2020.06.280.
  • Subramanian, B., T. Venugopal, M. Feroskhan, and R. Sivakumar. 2020. Emission characteristic of a dual fuel compression ignition engine operating on diesel + hydrogen & diesel + HHO gas with same energy share at idling condition. IOP Conference Series: Earth and Environmental Science (1):573. doi:10.1088/1755-1315/573/1/012001.
  • Subramani, L., M. Parthasarathy, D. Balasubramanian and K. Ramalingam. 2018. Novel Garcinia gummi-gutta methyl ester (GGME) as a potential alternative feedstock for existing unmodified DI diesel engine. Renewable Energy 125:568–577. doi:10.1016/j.renene.2018.02.134.
  • Szabados, G., and B. Á. 2018. Experimental investigation of physicochemical properties of diesel, biodiesel and TBK-biodiesel fuels and combustion and emission analysis in CI internal combustion engine. Renew Energy 121:568–78. doi:10.1016/j.renene.2018.01.048.
  • Taib, N. M., M. R. A. Mansor, and M. WMFW. 2020. Combustion characteristics of direct injection hydrogen in noble gases atmosphere. IOP Conference Series: Earth and Environmental Science 463 (1):463. doi:10.1088/1755-1315/463/1/012058.
  • Talibi, M., P. Hellier, R. Morgan, C. Lenartowicz, and N. Ladommatos. 2018. Hydrogen-diesel fuel co-combustion strategies in light duty and heavy duty CI engines. International Journal of Hydrogen Energy 43:9046–58. doi:10.1016/j.ijhydene.2018.03.176.
  • Teja, N. B., P. Ganeshan, V. Mohanavel, A. Karthick, K. Raja, K. Krishnasamy, and M. Muhibbullah. 2022. Performance and emission analysis of watermelon seed oil methyl ester and n-butanol blends fueled diesel engine. Mathematical Problems in Engineering 2022:1–12. doi:10.1155/2022/2456338.
  • Thangavel, V., B. Subramanian, and V. K. Ponnusamy. 2023. Investigations on the effect of H2 and HHO gas induction on brake thermal efficiency of dual-fuel CI engine. Fuel 337:126888. doi:10.1016/j.fuel.2022.126888.
  • Tipanluisa, L., K. Thakkar, N. Fonseca, and J. M. López. 2022. Investigation of diesel/n-butanol blends as drop-in fuel for heavy-duty diesel engines: Combustion, performance, and emissions. Energy Conversion and Management 255:255. doi:10.1016/j.enconman.2022.115334.
  • Uyaroğlu, A., A. Uyumaz, and İ. Çelikten. 2018. Comparison of the combustion, performance, and emission characteristics of inedible Crambe abyssinica biodiesel and edible hazelnut, corn, soybean, sunflower, and canola biodiesels. Environ Prog Sustainable Energy 37 (4):1438–47. doi:10.1002/ep.12794.
  • VD, F. S., J. J. Segovia, M. Carmen Martín, J. Zambrano, M. B. Oliveira, L. Ás, and J. A. P. Coutinho. 2014. Measurement and prediction of high-pressure viscosities of biodiesel fuels. Fuel 122:223–28. doi:10.1016/j.fuel.2014.01.031.
  • Venkadesan, G., and N. M. Mohandoss. 2019. Combustion, performance and emission analysis of dual fuel engine using tsrb biogas. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 41 (18):2171–83. doi:10.1080/15567036.2018.1550538.
  • Venkatesan, V., and N. Nallusamy. 2020. Pine oil-soapnut oil methyl ester blends: A hybrid biofuel approach to completely eliminate the use of diesel in a twin cylinder off-road tractor diesel engine. Fuel 262:116500. doi:10.1016/j.fuel.2019.116500.
  • Venkatraman, V., S. Sugumar, S. Sekar, and S. Viswanathan. 2019. Environmental effect of CI engine using microalgae biofuel with nano-additives. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 41 (20):2429–38. doi:10.1080/15567036.2018.1563250.
  • Verma, S., L. M. Das, S. S. Bhatti, and S. C. Kaushik. 2017. A comparative exergetic performance and emission analysis of pilot diesel dual-fuel engine with biogas, CNG and hydrogen as main fuels. Energy Conversion and Management 151:764–77. doi:10.1016/j.enconman.2017.09.035.
  • Wang, S., V. Karthickeyan, E. Sivakumar, and M. Lakshmikandan. 2020. Experimental investigation on pumpkin seed oil methyl ester blend in diesel engine with various injection pressure, injection timing and compression ratio. Fuel 264:116868. doi:10.1016/j.fuel.2019.116868.
  • Yan, J., S. Gao, W. Zhao, and T. H. Lee. 2021. Study of combustion and emission characteristics of a diesel engine fueled with diesel, butanol-diesel and hexanol-diesel mixtures under low intake pressure conditions. Energy Conversion and Management 243:114273. doi:10.1016/j.enconman.2021.114273.
  • Yaqoob, H., Y. H. Teoh, F. Sher, M. A. Jamil, M. Ali, Ü. Ağbulut, H. A. Salam, M. Arslan, M. E. M. Soudagar, M. A. Mujtaba, et al. 2022. Energy, exergy, sustainability and economic analysis of waste tire pyrolysis oil blends with different nanoparticle additives in spark ignition engine. Energy 251:1–48. doi:10.1016/j.energy.2022.123697.
  • Yesilyurt, M. K. 2020. The examination of a compression-ignition engine powered by peanut oil biodiesel and diesel fuel in terms of energetic and exergetic performance parameters. Fuel 278:118319. doi:10.1016/j.fuel.2020.118319.
  • Yesilyurt, M. K., Z. Yilbasi, and M. Aydin. 2020. The performance, emissions, and combustion characteristics of an unmodified diesel engine running on the ternary blends of pentanol/safflower oil biodiesel/diesel fuel. Vol. 140. Springer International Publishing. doi:10.1007/s10973-020-09376-6.
  • Yilmaz, I. T., and M. Gumus. 2017. Investigation of the effect of biogas on combustion and emissions of TBC diesel engine. Fuel 188:69–78. doi:10.1016/j.fuel.2016.10.034.
  • Yu H., X. Ren, Y. Liu Y. Xie, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2019. Extraction of Cinnamomum camphora chvar. Borneol essential oil using neutral cellulase assisted-steam distillation: Optimization of extraction, and analysis of chemical constituents. Industrial Crops and Products 141:111794. doi:10.1016/j.indcrop.2019.111794.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.