64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of bio-nano doped phase change material (bio-nano/PCM) for building energy management

, , ORCID Icon & ORCID Icon
Pages 3760-3778 | Received 25 Apr 2023, Accepted 18 Feb 2024, Published online: 13 Mar 2024

References

  • Aketouane, Z., M. Malha, D. Bruneau, A. Bah, B. Michel, M. Asbik, and O. Ansari. 2018. Energy savings potential by integrating Phase Change Material into hollow bricks: The case of Moroccan buildings. Building Simulation 11:1109–22. doi:10.1007/s12273-018-0457-5.
  • Aqib, M., A. Hussain, H. M. Ali, A. Naseer, and F. Jamil. 2020. Experimental case studies of the effect of Al2O3 and MWCNTs nanoparticles on heating and cooling of PCM. Case Studies in Thermal Engineering 22:100753. doi:10.1016/j.csite.2020.100753.
  • Boobalakrishnan, P., P. M. Kumar, G. Balaji, D. S. Jenaris, S. Kaarthik, M. J. P. Babu and K. Karthhik. 2021. Thermal management of metal roof building using phase change material (PCM). Materials Today: Proceedings, 47, 5052–58. 10.1016/j.matpr.2021.05.012
  • Chai, J., and J. Fan. 2022. Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings. Materials Today Energy 24:100925. doi:10.1016/j.mtener.2021.100925.
  • Dixit, P., S. Parvate, V. J. Reddy, J. Singh, T. K. Maiti, A. Dasari, and S. Chattopadhyay. 2022. Effect of surfactants on encapsulation of hexadecane phase change material in calcium carbonate shell for thermal energy storage. Journal of Energy Storage 55:105491. doi:10.1016/j.est.2022.105491.
  • Falzone, G., G. P. Falla, Z. Wei, M. Zhao, A. Kumar, M. Bauchy, N. Neithalath, L. Pilon, and G. Sant. 2016. The influences of soft and stiff inclusions on the mechanical properties of cementitious composites. Cement and Concrete Composites 71:153–165. doi:10.1016/j.cemconcomp.2016.05.008.
  • Frazzica, A., V. Brancato, V. Palomba, D. La Rosa, F. Grungo, L. Calabrese, and E. Proverbio. 2019. Thermal performance of hybrid cement mortar-PCMs for warm climates application. Solar Energy Materials and Solar Cells 193:270–280. doi:10.1016/j.solmat.2019.01.022.
  • Jiang, Z., W. Yang, F. He, C. Xie, J. Fan, J. Wu, and K. Zhang. 2018. Microencapsulated paraffin phase-change material with calcium carbonate shell for thermal energy storage and solar-thermal conversion. Langmuir 34 (47):14254–14264. doi:10.1021/acs.langmuir.8b03084.
  • Khan, S. R., S. Jamil, S. Ali, S. A. Khan, M. Mustaqeem, and M. R. S. A. Janjua. 2020. Synthesis and structure of calcium-tin hybrid microparticles from egg shell and investigation of their thermal behavior and catalytic application. Chemical Physics 530:110613. doi:10.1016/j.chemphys.2019.110613.
  • King, M. F. L., P. N. Rao, A. Sivakumar, V. K. Mamidi, S. Richard, M. Vijayakumar, K. Arunprasath and P. M. Kumar. 2022. Thermal performance of a double-glazed window integrated with a phase change material (PCM). Materials Today: Proceedings, 50, 1516–21. 10.1016/j.matpr.2021.09.099
  • Kishore, R. A., M. V. Bianchi, C. Booten, J. Vidal, and R. Jackson. 2020. Optimizing PCM-integrated walls for potential energy savings in US buildings. Energy and Buildings 226:110355. doi:10.1016/j.enbuild.2020.110355.
  • Kumar, P. M., and K. Mylsamy. 2020. A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater. Renewable Energy 162:662–676. doi:10.1016/j.renene.2020.08.122.
  • Kumar, B. A., R. Saminathan, M. Tharwan, M. Vigneshwaran, P. S. Babu, S. Ram and P. M. Kumar. 2022. Study on the mechanical properties of a hybrid polymer composite using egg shell powder based bio-filler. Materials Today: Proceedings, Trichy, Tamil Nadu, India, 679–83. doi:10.1016/j.matpr.2022.07.114.
  • Lin, S. C., and H. H. Al-Kayiem. 2016. Evaluation of copper nanoparticles–paraffin wax compositions for solar thermal energy storage. Solar Energy 132:267–278. doi:10.1016/j.solener.2016.03.004.
  • Mahdi, J. M., S. Lohrasbi, D. D. Ganji, and E. C. Nsofor. 2019. Simultaneous energy storage and recovery in the triplex-tube heat exchanger with PCM, copper fins and Al2O3 nanoparticles. Energy Conversion and Management 180:949–961. doi:10.1016/j.enconman.2018.11.038.
  • Maleki, B., A. Khadang, H. Maddah, M. Alizadeh, A. Kazemian, and H. M. Ali. 2020. Development and thermal performance of nanoencapsulated PCM/plaster wallboard for thermal energy storage in buildings. Journal of Building Engineering 32:101727. doi:10.1016/j.jobe.2020.101727.
  • Manoj Kumar, P., K. Mylsamy, K. Alagar, and K. Sudhakar. 2020. Investigations on an evacuated tube solar water heater using hybrid-nano based organic phase change material. International Journal of Green Energy 17 (13):872–883. doi:10.1080/15435075.2020.1809426.
  • Marani, A., and M. Madhkhan. 2021. Thermal performance of concrete sandwich panels incorporating phase change materials: An experimental study. Journal of Materials Research and Technology 12:760–775. doi:10.1016/j.jmrt.2021.03.022.
  • Marani, A., and M. L. Nehdi. 2019. Integrating phase change materials in construction materials: Critical review. Construction and Building Materials 217:36–49. doi:10.1016/j.conbuildmat.2019.05.064.
  • Mohseni, E., W. Tang, and S. Wang. 2019. Development of thermal energy storage lightweight structural cementitious composites by means of macro-encapsulated PCM. Construction and Building Materials 225:182–195. doi:10.1016/j.conbuildmat.2019.07.136.
  • Pasupathi, M. K., K. Alagar, M. Mm, and G. Aritra. 2020. Characterization of hybrid-nano/paraffin organic phase change material for thermal energy storage applications in solar thermal systems. Energies 13 (19):5079. doi:10.3390/en13195079.
  • Pasupathy, A., R. Velraj, and R. V. Seeniraj. 2008. Phase change material-based building architecture for thermal management in residential and commercial establishments. Renewable and Sustainable Energy Reviews 12 (1):39–64. doi:10.1016/j.rser.2006.05.010.
  • Qin, Z., M. Li, J. Flohn, and Y. Hu. 2021. Thermal management materials for energy-efficient and sustainable future buildings. Chemical Communications 57 (92):12236–12253. doi:10.1039/D1CC05486D.
  • Rathore, P. K. S., and S. K. Shukla. 2020. An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings. Renewable Energy 149:1300–13. doi:10.1016/j.renene.2019.10.130.
  • Ricklefs, A., A. M. Thiele, G. Falzone, G. Sant, and L. Pilon. 2017. Thermal conductivity of cementitious composites containing microencapsulated phase change materials. International Journal of Heat and Mass Transfer 104:71–82. doi:10.1016/j.ijheatmasstransfer.2016.08.013.
  • Rinawa, M. L., P. Pitchandi, N. Vigneshkumar, R. Sharma, M. K. Singh, R. Subbiah and P. M. Kumar. 2022. Experimental analysis of the metal roofed industrial building using nano-silica disbanded crude wax (NDCW). Materials Today: Proceedings, 62, 1746–51. 10.1016/j.matpr.2021.12.253
  • Rinawa, M. L., S. A. Selvasofia, P. M. Kumar, R. Subbiah, R. Saminathan, M. K. Singh, P. T. Saravanakumar, G. I. T. Brain and V. K. Eswarlal. 2022. Analyzing an evacuated tube solar water heating system using twin-nano/paraffin as phase change material. Materials Today: Proceedings, 50, 2505–09. 10.1016/j.matpr.2021.10.500
  • Sarı, A., T. A. Saleh, G. Hekimoğlu, V. V. Tyagi. and R. K. Sharma. 2021. Microencapsulated heptadecane with calcium carbonate as thermal conductivity-enhanced phase change material for thermal energy storage. Journal of Molecular Liquids 328:115508. doi:10.1016/j.molliq.2021.115508.
  • Saxena, R., D. Rakshit, and S. C. Kaushik. 2020. Experimental assessment of phase change material (PCM) embedded bricks for passive conditioning in buildings. Renewable Energy 149:587–599. doi:10.1016/j.renene.2019.12.081.
  • Seong, Y. B., and J. H. Lim. 2013. Energy saving potentials of phase change materials applied to lightweight building envelopes. Energies 6 (10):5219–5230. doi:10.3390/en6105219.
  • Shi, J., X. Wu, R. Sun, B. Ban, J. Li, and J. Chen. 2019. Synthesis and performance evaluation of paraffin microcapsules with calcium carbonate shell modulated by different anionic surfactants for thermal energy storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects 571:36–43. doi:10.1016/j.colsurfa.2019.03.029.
  • Sun, W., Y. Zhang, Z. Ling, X. Fang, and Z. Zhang. 2020. Experimental investigation on the thermal performance of double-layer PCM radiant floor system containing two types of inorganic composite PCMs. Energy and Buildings 211:109806. doi:10.1016/j.enbuild.2020.109806.
  • Tony, M. A. 2021. Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects. Energy Storage 3 (4):e238. doi:10.1002/est2.238.
  • Vilarinho, I. S., E. Filippi, and M. P. Seabra. 2022. Development of eco-ceramic wall tiles with bio-CaCO3 from eggshells waste. Open Ceramics 9:100220. doi:10.1016/j.oceram.2022.100220.
  • Wahid, M. A., S. E. Hosseini, H. M. Hussen, H. J. Akeiber, S. N. Saud, and A. T. Mohammad. 2017. An overview of phase change materials for construction architecture thermal management in hot and dry climate region. Applied Thermal Engineering 112:1240–1259. doi:10.1016/j.applthermaleng.2016.07.032.
  • Wang, Z., Q. Wang, C. Jia, and J. Bai. 2022. Thermal evolution of chemical structure and mechanism of oil sands bitumen. Energy 244:123190. doi:10.1016/j.energy.2022.123190.
  • Wang, J., H. Xie, Z. Guo, L. Guan, and Y. Li. 2014. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Applied Thermal Engineering 73 (2):1541–1547. doi:10.1016/j.applthermaleng.2014.05.078.
  • Wu, W., and H. M. Skye. 2021. Residential net-zero energy buildings: Review and perspective. Renewable and Sustainable Energy Reviews 142:110859. doi:10.1016/j.rser.2021.110859.
  • Xue, L., P. Keblinski, S. R. Phillpot, S. S. Choi, and J. A. Eastman. 2004. Effect of liquid layering at the liquid–solid interface on thermal transport. International Journal of Heat and Mass Transfer 47 (19–20):4277–84. doi:10.1016/j.ijheatmasstransfer.2004.05.016.
  • Yang, S., Z. Huang, Q. Hu, Y. Zhang, F. Wang, H. Wang, and Y. Shu. 2022. Proportional optimization model of multiscale spherical BN for enhancing thermal conductivity. ACS Applied Electronic Materials 4 (9):4659–4667. doi:10.1021/acsaelm.2c00878.
  • Yu, L., S. Qin, M. Zhang, C. Shen, T. Jiang, and X. Guan. 2021. A review of deep reinforcement learning for smart building energy management. IEEE Internet of Things Journal 8 (15):12046–12063. doi:10.1109/JIOT.2021.3078462.
  • Zabalegui, A., D. Lokapur, and H. Lee. 2014. Nanofluid PCMs for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance. International Journal of Heat and Mass Transfer 78:1145–1154. doi:10.1016/j.ijheatmasstransfer.2014.07.051.
  • Zhang, Y., X. He, X. Cong, Q. Wang, H. Yi, S. Li, C. Zhang, T. Zhang, X. Wang, and Q. Chi. 2023. Enhanced energy storage performance of polyethersulfone-based dielectric composite via regulating heat treatment and filling phase. Journal of Alloys and Compounds 960:170539. doi:10.1016/j.jallcom.2023.170539.
  • Zhang, S., P. Ocłoń, J. J. Klemeš, P. Michorczyk, K. Pielichowska, and K. Pielichowski. 2022. Renewable energy systems for building heating, cooling and electricity production with thermal energy storage. Renewable and Sustainable Energy Reviews 165:112560. doi:10.1016/j.rser.2022.112560.
  • Zhang, L., Y. Wang, B. Ding, J. Gu, N. Ukrainczyk, and J. Cai. 2023. Development of geopolymer-based composites for geothermal energy applications. Journal of Cleaner Production 419:138202. doi:10.1016/j.jclepro.2023.138202.
  • Zhao, B. C., and R. Z. Wang. 2019. Perspectives for short-term thermal energy storage using salt hydrates for building heating. Energy 189:116139. doi:10.1016/j.energy.2019.116139.
  • Zhou, D., Y. Zhou, J. Yuan, and Y. Liu. 2020. Palmitic acid-stearic acid/expanded graphite as form-stable composite phase-change material for latent heat thermal energy storage. Journal of Nanomaterials 2020:1–9. doi:10.1155/2020/1648080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.