211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hydrothermal performance of mini-channel heat sink using nanofluids/hybrid nanofluids: A numerical study

, , , , ORCID Icon &
Pages 4628-4646 | Received 10 Apr 2023, Accepted 21 Feb 2024, Published online: 27 Mar 2024

References

  • Aghabozorg, M. H., A. Rashidi, and S. Mohammadi. 2016. Experimental investigation of heat transfer enhancement of Fe2O3-CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger. Experimental Thermal & Fluid Science 72:182–89. doi:10.1016/j.expthermflusci.2015.11.011.
  • Ali, H. M., and W. Arshad. 2015. Thermal performance investigation of staggered and inline pin fin heat sinks using water based rutile and anatase TiO2 nanofluids. Energy Conversion and Management 106:793–803. doi:10.1016/j.enconman.2015.10.015.
  • Babar, H., and H. M. Ali. 2019. Airfoil shaped pin-fin heat sink: Potential evaluation of ferric oxide and titania nanofluids. Energy Conversion and Management 202:112194. doi:10.1016/j.enconman.2019.112194.
  • Babar, H., H. Wu, H. M. Ali, T. R. Shah, and W. Zhang. 2022. Staggered oriented airfoil shaped pin-fin heat sink: Investigating the efficacy of novel water based ferric oxide-silica hybrid nanofluid. International Journal of Heat and Mass Stansfer 194 (June):123085. doi:10.1016/j.ijheatmasstransfer.2022.123085.
  • Baig, T., Z. Rehman, H. A. Tariq, S. Manzoor, M. Ali, A. Wadood, K. Rajski, and H. Park. 2021. Thermal performance investigation of slotted fin minichannel heat sink for microprocessor cooling. Energies 14 (19):2021. doi:10.3390/en14196347.
  • Bar-Cohen, A., and M. Iyengar. 2002. Design and optimization of air-cooled heat sinks for sustainable development. IEEE Transactions on Components and Packaging Technologies 25 (4):584–91. doi:10.1109/TCAPT.2003.809112.
  • Batchelor, B. K. 1976. Brownian diffusion of particles with hydrodynamic interaction. 74 (1):1–29. doi:10.1017/S0022112076001663.
  • Chen, C. H., and C. C. Wang. 2015. A novel trapezoid fin pattern applicable for air-cooled heat sink. Heat and Mass Transfer und Stoffuebertragung 51 (11):1631–37. doi:10.1007/s00231-015-1666-4.
  • Devi, S. S. U., and S. P. A. Devi. 2016. Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting lorentz force subject to Newtonian heating. Canadian Journal of Physics 94 (5):490–96. doi:10.1139/cjp-2015-0799.
  • Hadi, F., and H. M. Ali. 2021. Experimental thermal and hydraulic study of super hydrophobic wavy mini channel heat sink using aqueous nanofluids. Chemical Engineering Communications 129 (0):1–23. doi:10.1080/00986445.2021.2001459.
  • Hamilton, R. L., and O. K. Crosser. 1959. Thermal conductivity of hetrogeneous two-component system. 1 (3):187–91. doi:10.1021/i160003a005.
  • Hamilton, R. L., and O. K. Crosser. 1962. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals 1 (3):187–91. doi:10.1021/i160003a005.
  • Huang, S., J. Zhao, L. Gong, and X. Duan. 2017. Thermal performance and structure optimization for slotted microchannel heat sink. Applied Thermal Engineering 115 :1266–76. March 2018 doi:10.1016/j.applthermaleng.2016.09.131
  • Jajja, S. A., W. Ali, H. M. Ali, and A. M. Ali. 2014. Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing. Applied Thermal Engineering 64 (1–2):76–82. doi:10.1016/j.applthermaleng.2013.12.007.
  • Khaleduzzaman, S. S., I. M. Mahbubul, M. R. Sohel, R. Saidur, J. Selvaraj, T. A. Ward, and M. E. Niza. 2017. Experimental analysis of energy and friction factor for titanium dioxide nanofluid in a water block heat sink. International Journal of Heat and Mass Stansfer 115:77–85. doi:10.1016/j.ijheatmasstransfer.2017.08.001.
  • Khan, A., and M. Ali. 2022. Thermo-hydraulic behavior of alumina/silica hybrid nanofluids through a straight minichannel heat sink. Case Studies in Thermal Engineering 31:101838. doi:10.1016/j.csite.2022.101838.
  • Krishna, V. M., M. S. Kumar, O. Mahesh, and P. S. Kumar. 2021. Numerical investigation of heat transfer and pressure drop for cooling of microchannel heat sink using MWCNT-CuO-water hybrid nanofluid with different mixture ratio. Materials Today: Proceedings 42:969–74. doi:10.1016/j.matpr.2020.11.935.
  • Kumar, V., and J. Sarkar. 2019. Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3 -TiO2 hybrid nano fl uid in minichannel heat sink with different mixture ratio. Powder Technology 345:717–27. doi:10.1016/j.powtec.2019.01.061.
  • Loew, R. M. 1995. Determinants of divorced older women’s labor supply. Research on Aging 17 (4):385–411. doi:10.1177/0164027595174002.
  • Moffat, R. J. 2007. Modeling air-cooled heat sinks as heat exchangers. Annual IEEE Semiconductor Thermal Measurement and Management Symposium. 200–07, doi: 10.1109/STHERM.2007.352424.
  • Murshed, S. M. S., K. C. Leong, and C. Yang. 2008. Thermophysical and electrokinetic properties of nanofluids–a critical review. Applied Thermal Engineering 28 (17–18):2109–25. doi:10.1016/j.applthermaleng.2008.01.005.
  • Patankar, S. V. 1980. Numerical heat transfer and fluid flow. New York, London: Hemisphere Publishing Corporation, McGraw Hill Book Company.
  • Roshani, M., S. Z. Miry, P. Hanafizadeh, and M. Ashjaee. 2015. Hydrodynamics and heat transfer characteristics of a miniature plate pin-fin heat sink utilizing Al2O3-water and TiO2-water nanofluids. Journal of Thermal Science and Engineering Applications 7 (3):1–12. doi:10.1115/1.4030103.
  • Saeed, M., and M. Kim. 2018. International journal of heat and mass transfer heat transfer enhancement using nanofluids (Al2O3 -H 2 O) in mini-channel heatsinks. International Journal of Heat and Mass Stansfer 120:671–82. doi:10.1016/j.ijheatmasstransfer.2017.12.075.
  • Saeed, M., and M. H. Kim. 2016. Étude Numérique De La Performance Thermo-Hydraulique Des Puits De Chaleur À Minicanaux Refroidis À L’Eau. International Journal of Refrigeration-Revue Internationale Du Froid 69:147–64. doi:10.1016/j.ijrefrig.2016.05.004.
  • Saeed, M., and M. H. Kim. 2018. Heat transfer enhancement using nanofluids (Al2O3-H2O) in mini-channel heatsinks. International Journal of Heat and Mass Stansfer 120:671–82. doi:10.1016/j.ijheatmasstransfer.2017.12.075.
  • Sahoo, R. R., P. Ghosh, and J. Sarkar. 2017. Performance analysis of a louvered fin automotive radiator using hybrid nanofluid as coolant. Heat Transfer Research 46 (7):978–95. doi:10.1002/htj.21254.
  • Sarkar, J. 2011. A critical review on convective heat transfer correlations of nanofluids. Renewable and Sustainable Energy Reviews 15 (6):3271–77. doi:10.1016/j.rser.2011.04.025.
  • Schiller, L., and A. Naumann. 1935. A drag coefficient correlation. Zeitschrift des Vereins Deutscher Ingenieure 77:318–20.
  • Shahsavar, A., K. Moradi, Ç. Yıldız, P. Farhadi, and M. Arıcı. 2022. Effect of nanoparticle shape on cooling performance of boehmite-alumina nanofluid in a helical heat sink for laminar and turbulent flow regimes. International Journal of Mechanical Sciences 217:107045. doi:10.1016/j.ijmecsci.2021.107045.
  • Shahsavar, A., M. Shahmohammadi, M. Arıcı, and H. M. Ali. Dec 2022. Extensive investigation of the fluid inlet/outlet position effects on the performance of micro pin-fin heatsink through simulation. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 44 (4):9489–505. doi:10.1080/15567036.2022.2134518.
  • Sivasankaran, H., G. Asirvatham, J. Bose, and B. Albert. 2010. Experimental analysis of parallel plate and crosscut pin fin heat sinks for electronic cooling applications. Thermal Science 14 (1):147–56. doi:10.2298/TSCI1001147S.
  • Sriharan, G., S. Harikrishnan, and H. M. Ali. 2022. Enhanced heat transfer characteristics of the mini hexagonal tube heat sink using hybrid nanofluids. Nanotechnology 33 (47):475403. doi:10.1088/1361-6528/ac8995.
  • Sudarmadji, S., I. Bambang, and S. H. Susilo. 2022. The effect of hybrid nanofluid cuo-tio 2 on radiator performance. Eastern-European Journal of Enterprise Technologies 4 (5 (118)):21–29. doi:10.15587/1729-4061.2022.263649.
  • Tae, K.-A.-A., E. H. Ali, and M. N. Jebur. 2017. Experimental investigation of water cooled minichannel heat sink for computer processing unit cooling. 7 (8):38–49. doi:10.9790/9622-0708013849.
  • Tang, B., R. Zhou, P. Bai, T. Fu, L. Lu, and G. Zhou. 2017. Heat transfer performance of a novel double-layer mini-channel heat sink. Heat and Mass Transfer und Stoffuebertragung 53 (3):929–36. doi:10.1007/s00231-016-1869-3.
  • Tao, W. Q. 2001. Numerical heat transfer. 2nd ed. Xi’an, China: Xi’an Jiaotong University Press.
  • Tariq, H. A., M. Anwar, and A. Malik. 2020. Numerical investigations of mini-channel heat sink for microprocessor cooling: Effect of slab thickness. Arabian Journal for Science & Engineering 45 (7):5169–77. doi:10.1007/s13369-020-04370-4.
  • Toghraie, D., M. M. D. Abdollah, F. Pourfattah, O. A. Akbari, and B. Ruhani. 2018. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. Journal of Thermal Analysis and Calorimetry 131 (2):1757–66. doi:10.1007/s10973-017-6624-6.
  • Tokit, E. M., H. A. Mohammed, and M. Z. Yusoff. 2012. Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids. International Communications in Heat and Mass Transfer 39 (10):1595–604. doi:10.1016/j.icheatmasstransfer.2012.10.013.
  • Wang, J., Y. Xu, R. Qahiti, M. Jafaryar, M. A. Alazwari, N. Abu-Hamdeh, A. Issakhov, and M. M. Selim. 2022. Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. Journal of Petroleum Science & Engineering 208:109734. doi:10.1016/j.petrol.2021.109734.
  • Xie, X. L., W. Q. Tao, and Y. L. He. 2007. Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Journal of Electronic Packaging Transactions of the ASME 129 (3):247–55. doi:10.1115/1.2753887.
  • Yıldız, Ç., M. Arıcı, and H. Karabay. 2019. Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of Al2O3-SiO2/water hybrid-nanofluid. International Journal of Heat and Mass Stansfer 140:598–605. doi:10.1016/j.ijheatmasstransfer.2019.06.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.