50
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Marigold (Tagetes) petals as a novel green bio-based heterogeneous catalyst for biodiesel production from palm oil

ORCID Icon, &
Pages 3964-3978 | Received 29 Sep 2023, Accepted 27 Feb 2024, Published online: 13 Mar 2024

References

  • Anbalagan, A., S. Thiyagaragan, J. Kumaragurubaran, and A. Arumugam. 2021. Synthesis of sulfonated mesoporous carbon from calophyllum inophyllum oil cake as heterogeneous transesterifcation catalyst for biodiesel production: A process optimization study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2021.1972057.
  • Argyle, M. D., and C. H. Bartholomew. 2015. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 5 (1):145–269. doi:10.3390/catal5010145.
  • Barros, S. D., W. A. Junior, S. IS, M. L. Takeno, F. X. Nobre, W. Pinheiro, L. Manzato, S. Iglauer, and F. A. Freitas. 2020. Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresource Technology 312:123569. doi:10.1016/j.biortech.2020.123569.
  • Basumatary, B., B. Das, B. Nath, and S. Basumatary. 2021. Synthesis and characterization of heterogeneous catalyst from sugarcane bagasse: Production of jatropha seed oil methyl esters. Current Research in Green and Sustainable Chemistry 4:100082. doi:10.1016/j.crgsc.2021.100082.
  • Betiku, E., A. M. Akintunde, and T. V. Ojumu. 2016. Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon’s plume (bauhinia monandra) seed oil: A process parameters optimization study. Energy 103:797–806. doi:10.1016/j.energy.2016.02.138.
  • Chamola, R., M. F. Khan, R. Anna, V. Manthan, and J. Siddharth. 2019. Response surface methodology based optimization of in situ transesterification of dry algae with methanol, H2SO4 and NaOH. Fuel 239:511–20. doi:10.1016/j.fuel.2018.11.038.
  • Chauhan, A. S., C. W. Chen, R. R. Singhania, M. Tiwari, R. G. Sartale, C. D. Dong, and A. K. Patel. 2022. Valorizations of marigold waste for high-value products and their industrial importance: A comprehensive review. Resources 11 (10):91. doi:10.3390/resources100091.
  • Chen, G. Y., R. Shan, J. F. Shi, and B. B. Yan. 2015. Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Processing Technology 133:8–13. doi:10.1016/j.fuproc.2015.01.005.
  • Choksi, H., S. Pandian, S. S. Arumugamurthi, P. Sivanandi, V. K. Booramurthy, and V. K. Booramurthy. 2021. Production of biodiesel from high free fatty acid feedstock usingheterogeneous acid catalyst derived from palm-fruit-bunch. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 43 (24):3393–402. doi:10.1080/15567036.2019.1623953.
  • Chouhan, A. P., and A. K. Sarma. 2013. Biodiesel production from jatropha curcas L. oil using lemna perpusilla torrey ash as heterogeneous catalyst. Biomass and Bioenergy 55:386–89. doi:10.1016/j.biombioe.2013.02.009.
  • Daimary, N., P. Boruah, K. S. Eldiehy, T. Pegu, P. Bardhan, U. Bora, M. Mandal, and D. Deka. 2022. Musa acuminata peel: A bioresource for bio-oil and byproduct utilization as a sustainable source of renewable green catalyst for biodiesel production. Renewable Energy 187:450–62. doi:10.1016/j.renene.2022.01.054.
  • Debbarma, S., and R. D. Misra. 2017. Effects of iron nanoparticles blended biodiesel on the performance and emission characteristics of a diesel dngine. Journal of Energy Resources and Technology 10 (4):041002. doi:10.1115/1.4036543.
  • Debbarma, S., and R. D. Misra. 2018. Effects of iron nanoparticle fuel additive on the performance and exhaust emissions of a compression ignition engine fueled with diesel and biodiesel. Journal of Thermal Science and Engineering Applications 10 (4):041002. doi:10.1115/1.4038708.
  • Eldiehy, K. S., M. Gohain, N. Daimary, D. Borah, M. Mandal, and D. Deka. 2022. Radish (raphanus sativus L.) leaves: A novel source for a highly efficient heterogeneous base catalyst for biodiesel production using waste soybean cooking oil and scenedesmus obliquus oil. Renewable Energy 191:888–901. doi:10.1016/j.renene.2022.04.070.
  • Gohain, M., K., Laskar, A. K., Paul, N. Daimary, M., Maharana, I. K., Goswami, A., Hazarika, U., Bora, and D. Deka 2020. Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C-C bond formation. Renew Energy 147:541–55. doi:10.1016/j.renene.2019.09.016.
  • Horticulture crops statistics. 2022. National horticulture board ministry of agriculture & farmers welfare, government of India, 1–2. https://static.pib.gov.in/WriteReadData/specificdocs/documents/2022/jul/doc202271470601.pdf.
  • John, M., M. O. Abdullah, T. Y. Hua, and C. Nolasco-Hipólito. 2021. Techno-economical and energy analysis of sunflower oil biodiesel synthesis assisted with waste ginger leaves derived catalysts. Renewable Energy 168:815–28. doi:10.1016/j.renene.2020.12.100.
  • Kamel, D. A., H. A. Farag, N. K. Amin, A. A. Zatout, and Y. O. Fouad. 2019. Utilization of ficus carica leaves as a heterogeneous catalyst for production of biodiesel from waste cooking oil. Environmental Science and Pollution Research 26 (32):32804–14. doi:10.1007/s11356-019-06424-z.
  • Kumar, D., and A. Ali. 2012. Nanocrystalline k–cao for the transesterification of a variety of feedstocks: Structure, kinetics and catalytic properties. Biomass and Bioenergy 46:459–68. doi:10.1016/j.biombioe.2012.06.040.
  • Lam, M. K., K. T. Lee, and A. R. Mohamed. 2010. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances 28 (4):500–518. doi:10.1016/j.biotechadv.2010.03.002.
  • Laskar, I. B., R. Gupta, S. Chatterjee, C. Vanlalveni, and L. Rokhum. 2020. Taming waste: Waste mangifera indica peel as a sustainable catalyst for biodiesel production at room temperature. Renewable Energy 161:207–220. doi:10.1016/j.renene.2020.07.061.
  • Leung, D. Y. C., X. Wu, and M. K. H. Leung. 2010. A review on biodiesel production using catalyzed transesterification. Applied Energy 87 (4):1083–95. doi:10.1016/j.apenergy.2009.10.006.
  • Mendonça, I. M., O. A. Paes, P. J. Maia, M. P. Souza, R. A. Almeida, C. C. Silva, J. S. Duvoisin, and F. A. Freitas. 2019. New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study. Renewable Energy 130:103–10. doi:10.1016/j.renene.2018.06.059.
  • Naeem, M. M., E. G. Al-Sakkari, D. C. Boffito, M. A. Gadalla, and F. H. Ashour. 2021. One-pot conversion of highly acidic waste cooking oil into biodiesel over a novel bio-based bi-functional catalyst. Fuel 283:118914. doi:10.1016/j.fuel.2020.118914.
  • Nath, B., P. Kalita, B. Das, and S. Basumatary. 2020. Highly efficient renewable heterogeneous base catalyst derived from waste sesamum indicum plant for synthesis of biodiesel. Renewable Energy 151:295–310. doi:10.1016/j.renene.2019.11.029.
  • Ng, M. H., and C. Liang Yung. 2019. Nuclear magnetic resonance spectroscopic characterisation of palm biodiesel and its blends. Fuel 257:116008. doi:10.1016/j.fuel.2019.116008.
  • Niju, S., S. K. Kanna, V. Ramalingam, M. K. Satheesh, and M. Balajii. 2019. Sugarcane bagasse derived biochar–a potential heterogeneous catalyst for transesterification process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (4):1–2. doi:10.1080/15567036.2019.1680771.
  • Nurdin, M., M. Fatma, F. Natsir, D. Wibowo, and D. Wibowo. 2017. Characterization of methyl ester compound of biodiesel from industrial liquid waste of crude palm oil processing. Analytical Chemistry Research 12:1–9. doi:10.1016/j.ancr.2017.01.002.
  • Othman, M. F., A. Adam, G. Najaf, and R. Mamat. 2017. Green fuel asalternative fuel for diesel engine: a review. Renewable and Sustainable Energy Reviews 80:694–709. doi:10.1016/j.rser.2017.05.140.
  • Pathak, G., K. Rajkumari, and L. Rokhum. 2019. Wealth from waste: M. acuminata peel waste-derived magnetic nanoparticles as a solid catalyst for the Henry reaction. Nanoscale Advances 1:1013–20. doi:10.1039/c8na00321a.
  • Roschat, W., T. Siritanon, B. Yoosuk, and V. Promarak. 2016. Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production. Energy Conversion and Management 119:453–62. doi:10.1016/j.enconman.2016.04.071.
  • Thushari, I., S. Babel, and C. Samart. 2019. Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst. Renewable Energy 134:125–34. doi:10.1016/j.renene.2018.11.030.
  • Ullah, Z., M. A. Bustam, Z. Man, A. S. Khan, N. Muhammad, and A. Sarwono. 2017. Preparation and kinetics study of biodiesel production from waste cooking oil using new functionalized ionic liquids as catalysts. Renewable Energy 114:755–65. doi:10.1016/j.renene.2017.07.085.
  • Yaashikaa, P. R., P. K. Senthil, and S. Karishma. 2022. Bio-derived catalysts for production of biodiesel: A review on feedstock, oil extraction methodologies, reactors and lifecycle assessment of biodiesel. Fuel 316:123379. doi:10.1016/j.fuel.2022.123379.
  • Zhao, C., P. Lv, L. Yang, S. Xing, W. Luo, and Z. Wang. 2018. Biodiesel synthesis over biochar-based catalyst from biomass waste pomelo peel. Energy Conversion and Management 160:477–85. doi:10.1016/j.enconman.2018.01.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.