40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation of leakage, dispersion and explosion behavior of LPG in kitchen

ORCID Icon, , , , , , , ORCID Icon, , , , & show all
Pages 3996-4011 | Received 15 Nov 2023, Accepted 29 Feb 2024, Published online: 13 Mar 2024

References

  • Association, C.G. 2023. National gas accident analysis report: Overview of 2022. https://finance.sina.com.cn/money/future/roll/2023-02-23/doc-imyhswep1776468.shtml/.
  • Baalisampang, T., R. Abbassi, V. Garaniya, F. Khan, and M. Dadashzadeh. 2017. Fire impact assessment in FLNG processing facilities using Computational Fluid Dynamics (CFD). Fire Safety Journal 92:42–52. doi:10.1016/j.firesaf.2017.05.012.
  • Brzezinska, D., and A. S. Markowski. 2017. Experimental investigation and CFD modelling of the internal car park environment in case of accidental LPG release. Process Safety & Environmental Protection 110:5–14. doi:10.1016/j.psep.2016.12.001.
  • Changshuai, Z., D. Hongguang, S. Sheng, Z. Kai, Z. Zongling, and G. Wei. 2023. Investigation of the length-to-diameter ratio of ducts effect on the oscillation propagation behavior and vented characteristics for propane-air vented explosions. Journal of Loss Prevention in the Process 86:105186. doi:10.1016/j.jlp.2023.105186.
  • Chi, M., H. Jiang, X. Lan, T. Xu, and Y. Jiang. 2021. Study on overpressure propagation law of vapor cloud explosion under different building layouts. American Chemical Society Omega 6 (49):34003–20. doi:10.1021/acsomega.1c05332.
  • CPS. 2007. Domestic Gas Cooking Appliances. GB 16410-2007.
  • CPS. 2019. Method for determining the external safety protection distance of hazardous chemical production installations and storage facilities. GB/T37243-2019.
  • Ferreira, T. D., and S. S. V. Vianna. 2020. Collision of convex objects for calculation of porous mesh in gas explosion simulation. Journal of Loss Prevention in the Process 69:104347. doi:10.1016/j.jlp.2020.104347.
  • Fiates, J., R. R. C. Santos, F. F. Neto, A. Z. Francesconi, V. Simoes, and S. S. V. Vianna. 2016. An alternative CFD tool for gas dispersion modelling of heavy gas. Journal of Loss Prevention in the Process 44:583–93. doi:10.1016/j.jlp.2016.08.002.
  • Gang, Z., K. Yang, Z. Qi, L. Runzhi, Q. Xinming, Z. Huanjuan, D. Jianfei, L. Yuying, Y. Siqi, L. Yang, et al. 2023. Hydrogen-rich gas production from disposable COVID-19 mask by steam gasification. Fuel 331. doi: 10.1016/j.fuel.2022.125720.
  • Gould, C. F., and J. Urpelainen. 2018. LPG as a clean cooking fuel: Adoption, use, and impact in rural India. Energy Policy 122:395–408. doi:10.1016/j.enpol.2018.07.042.
  • Gu, M., G. Chen, H. Wang, A. Yu, X. Ling, and J. Li. 2023. Experimental and numerical study on deflagration characteristics of large-scale propane–air mixture. American Chemical Society Omega 8 (26):23840–50. doi:10.1021/acsomega.3c02247.
  • Haochen, L., Y. Zifei, L. Jialing, and L. Hong. 2023. On the subgrid dissipation concept for large eddy simulation of turbulent combustion. Combustion & Flame 258, 113099. doi:10.1016/j.combustflame.2023.113099.
  • Huang, J., Z. Liu, M. Li, and Y. Sun. 2022. Study on deflagration process of LPG/DME blended combustible gas cloud in open space. Journal of Loss Prevention in the Process 76:104732. doi:10.1016/j.jlp.2022.104732.
  • Inc, A. 2012. ANSYS Fluent 19.0 user’s guide. Canonsburg, US: ANSYS Inc.
  • Jiao, W., B. Song, K. Cen, H. Zhang, G. Liu, and X. Tian. 2021. Experimental and numerical study on explosion characteristics and hazards of methane-air mixtures in a chamber. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–19. doi:10.1080/15567036.2021.2008061.
  • Li, J. L., J. Guo, X. X. Sun, and F. Q. Yang. 2023. Effect of the ignition position and obstacle on vented methane–air deflagration. Combustion, Explosion, and Shock Waves 59 (5):608–619. doi:10.1134/S0010508223050106.
  • Liu, Y., Y. Zhang, D. Zhao, J. Yin, L. Liu, and C.-M. Shu. 2019. Experimental study on explosion characteristics of hydrogen–propane mixtures. International Journal of Hydrogen Energy 44 (40):22712–22718. doi:10.1016/j.ijhydene.2019.03.064.
  • Li, F., Y. Yuan, X. Yan, R. Malekian, and Z. Li. 2018. A study on a numerical simulation of the leakage and diffusion of hydrogen in a fuel cell ship. Renewable and Sustainable Energy Reviews 97:177–185. doi:10.1016/j.rser.2018.08.034.
  • Li, X., H. Zhang, C. Yang, Y. Liu, C. Dong, X. Ye, and S. Jia. 2021. Effects of confined space flow fields on explosion and hazard analysis. Combustion Science and Technology 195 (5):923–57. doi:10.1080/00102202.2021.1976767.
  • Mao, X., R. Ying, Y. Yuan, F. Li, and B. Shen. 2020. Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship. International Journal of Hydrogen Energy 46 (9):6857–72. doi:10.1016/j.ijhydene.2020.11.158.
  • Planas, E., E. Pastor, J. Casal, and J. M. Bonilla. 2015. Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: The zarzalico accident. Journal of Loss Prevention in the Process 34:127–38. doi:10.1016/j.jlp.2015.01.026.
  • Qianran, H., Q. Xinming, S. Xingyu, Z. Qi, M. Changcheng, P. Lei, L. Yiming, F. He, and Y. Mengqi. 2022. Investigations on vapor cloud explosion hazards and critical safe reserves of LPG tanks. Journal of Loss Prevention in the Process 80, 104904. doi:10.1016/j.jlp.2022.104904.
  • Quaresma, T. L. S., T. D. Ferreira, and S. S. V. Vianna. 2021. A hybrid BML-fractal approach for the mean reaction rate modelling of accidental gas explosions in partially confined obstructed geometries. Process Safety & Environmental Protection 152:414–26. doi:10.1016/j.psep.2021.06.008.
  • Sarvestani, K., O. Ahmadi, S. B. Mortazavi, and H. A. Mahabadi. 2021. Development of a predictive accident model for dynamic risk assessment of propane storage tanks. Process Safety & Environmental Protection 148:1217–1232. doi:10.1016/j.psep.2021.02.018.
  • Su, Y., J. Li, B. Yu, and Y. Zhao. 2022. Numerical investigation on the leakage and diffusion characteristics of hydrogen-blended natural gas in a domestic kitchen. Renewable Energy 189:899–916. doi:10.1016/j.renene.2022.03.038.
  • Sun, R., L. Pu, H. Yu, M. Dai, and Y. Li. 2022. Modeling the diffusion of flammable hydrogen cloud under different liquid hydrogen leakage conditions in a hydrogen refueling station. International Journal of Hydrogen Energy 47 (61):25849–25863. doi:10.1016/j.ijhydene.2022.05.303.
  • Tássia, L. S. Q., D. F. Tatiele, and S. V. V. Sávio. 2021. Alternative approaches to the reaction rate modelling in gas explosion simulation using stokes. Journal of Loss Prevention in the Process 74, 104646. doi:10.1016/j.jlp.2021.104646.
  • Wang, K., Z. Liu, X. Qian, M. Li, and P. Huang. 2016. Comparative study on blast wave propagation of natural gas vapor cloud explosions in open space based on a full-scale experiment and PHAST. Energy & Fuels 30 (7):6143–52. doi:10.1021/acs.energyfuels.6b01293.
  • Wang, D., X. Qian, T. Ji, Q. Jing, Q. Zhang, and M. Yuan. 2021. Flammability limit and explosion energy of methane in enclosed pipeline under multi-phase conditions. Energy 217:119355. doi:10.1016/j.energy.2020.119355.
  • Wen, X., M. Yu, Z. Liu, and W. Sun. 2012. Large eddy simulation of methane–air deflagration in an obstructed chamber using different combustion models. Journal of Loss Prevention in the Process 25 (4):730–38. doi:10.1016/j.jlp.2012.04.008.
  • Xiangyu, T., Z. Weiwei, L. Fan-Peng, C. Tzu-Han, and C. Yung-Ho. 2023. China’s path of carbon neutralization to develop green energy and improve energy efficiency. Renewable Energy 206, 397-408. doi:10.1016/j.renene.2023.01.104.
  • Yanchao, S., X. Changling, L. Zhongxian, and D. Yang. 2021. A quantitative correlation of evaluating the flame speed for the BST method in vapor cloud explosions. Journal of Loss Prevention in the Process 73, 104622. doi:10.1016/j.jlp.2021.104622.
  • Yang, D., G. Chen, and Z. Dai. 2020. Accident modeling of toxic gas-containing flammable gas release and explosion on an offshore platform. Journal of Loss Prevention in the Process 65:104118. doi:10.1016/j.jlp.2020.104118.
  • Yet-Pole, I., and T.-L. Cheng. 2020. Application of CFD model in an LPG tank explosion accident. Journal of Loss Prevention in the Process 69, 104367. doi:10.1016/j.jlp.2020.104367.
  • Yuan, M., S. Jian, L. Yuntao, Z. Ning, R. Fei, and R. Wei. 2023. Study on explosion characteristics of hydrogen in a sudden expansion pipe. Energy Sources Part A: Recovery, Utilization, and Environmental Effects. 45(4): 9684-99 doi:10.1080/15567036.2023.2240265.
  • Yu, M., K. Zheng, and T. Chu. 2016. Gas explosion flame propagation over various hollow-square obstacles. Journal of Natural Gas Science and Engineering 30:221–227. doi:10.1016/j.jngse.2016.02.009.
  • Zanganeh, J., M. J. Ajrash Al-Zuraiji, and B. Moghtaderi. 2019. The capture and mitigation of fugitive methane: Examining the characteristics of methane explosions in an explosion chamber connected to a venting duct. Energy & Fuels 34 (1):645–54. doi:10.1021/acs.energyfuels.9b02942.
  • Zhao, Z., Y. Liang, B. Guo, S. Song, and J. Bai. 2023. Explosion dynamics of premixed LPG/H2 fuel in a confined space. International Journal of Hydrogen Energy 48 (92):36211–21. doi:10.1016/j.ijhydene.2023.05.282.
  • Zhenglong, Q., M. Heng, and L. Chuan. 2022. Influence of change in obstacle blocking rate gradient on LPG explosion behavior. Arabian Journal of Chemistry 16(2): 104496 doi:10.1016/j.arabjc.2022.104496.
  • Zhirong, W., L. Yongjun, T. Xuan, and G. Junhui. 2021. Risk probability evaluation for the effect of obstacle on CO2 leakage and dispersion indoors based on uncertainty theory. Journal of Loss Prevention in the Process 74, 104652. doi:10.1016/j.jlp.2021.104652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.