53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sustainable energy enhancement strategy from Chlorella vulgaris microalgae biomass resource

& ORCID Icon
Pages 4647-4660 | Received 11 Jan 2024, Accepted 01 Mar 2024, Published online: 27 Mar 2024

References

  • Adiya, Z. I. S. G., S. S. Adamu, M. A. Ibrahim, E. V. C. Okoh, and D. Ibrahim. 2022. Comparative study of bioethanol produced from different agro-industrial biomass residues. Earthline Journal of Chemical Sciences 143–52. doi:10.34198/ejcs.7222.143152.
  • Damayanti, A., Z. A. S. Bahlawan, and A. C. Kumoro. 2022. Modeling of bioethanol production through glucose fermentation using Saccharomyces cerevisiae immobilized on sodium alginate beads. Cogent Engineering 9 (1). doi:10.1080/23311916.2022.2049438.
  • Ighalo, J. O., K. Dulta, S. B. Kurniawan, F. O. Omoarukhe, U. Ewuzie, S. O. Eshiemogie, A. U. Ojo, and S. R. S. Abdullah. 2022. Progress in microalgae application for CO2 sequestration. Cleaner Chemical Engineering 3:100044. doi:10.1016/j.clce.2022.100044.
  • Kalair, A., N. Abas, M. S. Saleem, A. R. Kalair, and N. Khan. 2021. Role of energy storage systems in energy transition from fossil fuels to renewables. Energy Storage 3 (1). doi:10.1002/est2.135.
  • Lal, A., S. Banerjee, and D. Das. 2021. Aspergillus sp. assisted bioflocculation of chlorella MJ 11/11 for the production of biofuel from the algal-fungal co-pellet. Separation and Purification Technology 272:118320. doi:10.1016/j.seppur.2021.118320.
  • Ngamsirisomsakul, M., A. Reungsang, Q. Liao, and M. B. Kongkeitkajorn. 2019. Enhanced bio-ethanol production from Chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis. Renew Energy 141:482–92. doi:10.1016/j.renene.2019.04.008.
  • Okolie, J. A., E. I. Epelle, S. Nanda, D. Castello, A. K. Dalai, and J. A. Kozinski. 2021. Modeling and process optimization of hydrothermal gasification for hydrogen production: A comprehensive review. The Journal of Supercritical Fluids 173:105199. doi:10.1016/j.supflu.2021.105199.
  • Park, C., J. H. Lee, X. Yang, H. Y. Yoo, J. H. Lee, S. K. Lee, and S. W. Kim. 2016. Enhancement of hydrolysis of chlorella vulgaris by hydrochloric acid. Bioprocess and Biosystems Engineering 39:1015–21. doi:10.1007/s00449-016-1570-4.
  • Ramos, A., E. Monteiro, and A. Rouboa. 2022. Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods – a review. Energy Conversion and Management 270:116271. doi:10.1016/j.enconman.2022.116271.
  • Sene, L., B. Tavares, M. D. G. de Almeida Felipe, J. C. dos Santos, F. M. Pereira, G. C. Tominc, and M. A. A. da Cunha. 2023. Ethanol production by Kluyveromyces marxianus ATCC 36907: Fermentation features and mathematical modeling. Biocatalysis and Agricultural Biotechnology 51:102789. doi:10.1016/j.bcab.2023.102789.
  • Sethi, S., P. Choudhary, P. Nath, and O. P. Chauhan. 2022. Starch gelatinization and modification. In Advances in food chemistry, 65–116. Singapore: Springer Nature Singapore. doi:10.1007/978-981-19-4796-4_3.
  • Shenbagamuthuraman, V., and N. Kasianantham. 2023. Microwave irradiation pretreated fermentation of bioethanol production from chlorella vulgaris Biomasses: Comparative analysis of response surface methodology and artificial neural network techniques. Bioresource Technology 390:129867. doi:10.1016/j.biortech.2023.129867.
  • Sivarathnakumar, S., J. Jayamuthunagai, G. Baskar, R. Praveenkumar, I. A. E. Selvakumari, and B. Bharathiraja. 2019. Bioethanol production from woody stem Prosopis juliflora using thermo tolerant yeast Kluyveromyces marxianus and its kinetics studies. Bioresource Technology 293:122060. doi:10.1016/j.biortech.2019.122060.
  • Woo, J.-M., K.-M. Yang, S.-U. Kim, L. M. Blank, and J.-B. Park. 2014. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Applied Microbiology and Biotechnology 98:6085–94. doi:10.1007/s00253-014-5691-x.
  • Yusuf, A. A., and F. L. Inambao. 2019. Bioethanol production from different matooke peels species: A surprising source for alternative fuel. Case Studies in Thermal Engineering 13:100357. doi:10.1016/j.csite.2018.11.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.