34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Graphite sheet assisted photovoltaic -thermoelectric generator for hydrogen generation from seawater

ORCID Icon, & ORCID Icon
Pages 4064-4077 | Received 05 Dec 2023, Accepted 07 Mar 2024, Published online: 14 Mar 2024

References

  • Alluri, P. L., D. R. Alli, R. K. R. D V, and 2022. Modelling thermoelectric generators to harvest the low-temperature changes in electronic devices. International Journal of Engineering Trends and Technology 70 (9):105–10. doi:10.14445/22315381/ijett-v70i9p210.
  • Aridi, R., J. Faraj, S. Ali, T. Lemenand, and M. Khaled. 2021. Thermoelectric power generators: State-of-the-art, heat recovery method, and challenges. Electricity 2 (3):359–86. doi:10.3390/electricity2030022.
  • Badea, G. E., C. Hora, I. Maior, A. Cojocaru, C. Secui, S. M. Filip, and F. C. Dan. 2022. Sustainable hydrogen production from seawater electrolysis: Through fundamental electrochemical principles to the most recent development. Energies 15 (22):8560. doi:10.3390/en15228560.
  • Banerjee, S., S. Pattnayek, R. Kumar, and K. K. Kar. 2020. Impact of graphite on thermomechanical, mechanical, thermal, electrical properties, and thermal conductivity of HDPE/Copper composites. Fuel Cells 20 (2):116–30. doi:10.1002/fuce.201900004.
  • Bhavani, M., K. Vijaybhaskar Reddy, K. Mahesh, and S. Saravanan, 2021. Impact of variation of solar irradiance and temperature on the inverter output for grid connected photo voltaic (PV) system at different climate conditions. Materials Today: Proceedings. 10.1016/j.matpr.2021.06.120
  • Burnete, N. V., F. Mariasiu, D. Moldovanu, and C. Depcik. 2021. Simulink model of a thermoelectric generator for vehicle waste heat recovery. Applied Sciences 11 (3):1340. doi:10.3390/app11031340.
  • Galeev, A. G. 2017. Review of engineering solutions applicable in tests of liquid rocket engines and propulsion systems employing hydrogen as a fuel and relevant safety assurance aspects. International Journal of Hydrogen Energy 42 (39):25037–47. doi:10.1016/j.ijhydene.2017.06.242.
  • Gibson, T. L., and N. A. Kelly. 2010. Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices. International Journal of Hydrogen Energy 35 (3):900–11. doi:10.1016/j.ijhydene.2009.11.074.
  • Gopinath, M., and R. Marimuthu. 2024. Experimental study of photovoltaic-thermoelectric generator with graphite sheet. Case Studies in Thermal Engineering 54:103982–103982. doi:10.1016/j.csite.2024.103982.
  • Haider, S. A., M. Sajid, and S. Iqbal. 2020. Forecasting hydrogen production potential in islamabad from solar energy using water electrolysis. International Journal of Hydrogen Energy 46 (2):1671–81. doi:10.1016/j.ijhydene.2020.10.059.
  • Haiping, C., H. Jiguang, Z. Heng, L. Kai, L. Haowen, and L. Shuangyin. 2019. Experimental investigation of a novel low concentrating photovoltaic/thermal–thermoelectric generator hybrid system. Energy 166:83–95. doi:10.1016/j.energy.2018.10.046.
  • He, R., G. Schierning, and K. Nielsch. 2017. Thermoelectric devices: A review of devices, architectures, and contact optimization. Advanced Materials Technologies 3 (4):1700256. doi:10.1002/admt.201700256.
  • Huang, K., Y. Yan, G. Wang, and B. Li. 2021. Improving transient performance of thermoelectric generator by integrating phase change material. Energy 219:119648. doi:10.1016/j.energy.2020.119648.
  • Jamesh, M.-I., and M. Harb. 2020. Recent advances on hydrogen production through seawater electrolysis. Materials Science for Energy Technologies. doi:10.1016/j.mset.2020.09.005.
  • Karthick, K., S. Suresh, G. C. Joy, and R. Dhanuskodi. 2019. Experimental investigation of solar reversible power generation in thermoelectric generator (TEG) using thermal energy storage. Energy for Sustainable Development 48:107–14. doi:10.1016/j.esd.2018.11.002.
  • López-Castrillón, W., H. H. Sepúlveda, and C. Mattar. 2021. Off-grid hybrid electrical generation systems in remote communities: Trends and characteristics in sustainability solutions. Sustainability 13 (11):5856. doi:10.3390/su13115856.
  • Mahmoudinezhad, S., S. Qing, A. Rezaniakolaei, and L. Aistrup Rosendahl. 2017. Transient model of hybrid concentrated photovoltaic with thermoelectric generator. Energy Procedia 142:564–69. doi:10.1016/j.egypro.2017.12.088.
  • Mamur, H., Ö. F. Dilmaç, J. Begum, and M. R. A. Bhuiyan. 2021. Thermoelectric generators act as renewable energy sources. Cleaner Materials 2:100030. doi:10.1016/j.clema.2021.100030.
  • Mathesh, G., and R. Saravanakumar. 2023. A novel intelligent controller-based power management system with instantaneous reference Current in hybrid energy-fed electric vehicle. IEEE Access 11:137849–65. doi:10.1109/access.2023.3339249.
  • Mirza, A. F., M. Mansoor, K. Zerbakht, M. Y. Javed, M. H. Zafar, and N. M. Khan. 2021. High-efficiency hybrid PV-TEG system with intelligent control to harvest maximum energy under various non-static operating conditions. Journal of Cleaner Production 320:128643. doi:10.1016/j.jclepro.2021.128643.
  • Saleh, U. A., M. A. Johar, S. A. B. Jumaat, M. N. Rejab, and W. A. Wan Jamaludin. 2021. Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output: A Review. International Journal of Renewable Energy Development 10 (2):385–400. doi:10.14710/ijred.2021.33917.
  • Senthilraja, S., R. Gangadevi, H. Köten, and R. Marimuthu. 2020. Performance assessment of a solar powered hydrogen production system and its ANFIS model. Heliyon 6 (10):e05271. doi:10.1016/j.heliyon.2020.e05271.
  • Sharma, N. K., M. K. Gaur, and C. S. Malvi, 2021. Application of phase change materials for cooling of solar photovoltaic panels: A review. Materials Today: Proceedings. 10.1016/j.matpr.2021.05.127
  • Shen, H., H. Lee, and S. Han. 2020. Optimization and fabrication of a planar thermoelectric generator for a high-performance solar thermoelectric generator. Current Applied Physics 22:6–13. doi:10.1016/j.cap.2020.11.005.
  • Shi, X.-L., J. Zou, and Z.-G. Chen. 2020. Advanced thermoelectric design: From materials and structures to devices. Chemical Reviews 120 (15):7399–515. doi:10.1021/acs.chemrev.0c00026.
  • Tabanjat, A., M. Becherif, M. Emziane, D. Hissel, H. S. Ramadan, and B. Mahmah. 2015. Fuzzy logic-based water heating control methodology for the efficiency enhancement of hybrid PV–PEM electrolyser systems. International Journal of Hydrogen Energy 40 (5):2149–61. doi:10.1016/j.ijhydene.2014.11.135.
  • Tan, V., P. R. Dias, N. Chang, and R. Deng. 2022. Estimating the Lifetime of Solar Photovoltaic Modules in Australia. Sustainability 14 (9):5336. doi:10.3390/su14095336.
  • Tebibel, H. 2017. Off grid PV system for hydrogen production using PEM methanol electrolysis and an optimal management strategy. International Journal of Hydrogen Energy 42 (30):19432–45. doi:10.1016/j.ijhydene.2017.05.205.
  • Tohidi, F., S. Ghazanfari Holagh, and A. Chitsaz. 2022. Thermoelectric generators: A comprehensive review of characteristics and applications. Applied Thermal Engineering 201:117793. doi:10.1016/j.applthermaleng.2021.117793.
  • Zhao, Y., W. Li, H. Diao, Y. Wang, and M. Ge. 2022. Experimental research of solar thermoelectric generator based on flat heat pipe. Energy Reports 8:245–50. doi:10.1016/j.egyr.2022.05.193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.