112
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quantifying the impact of electricity pricing on electric vehicle user behavior: a V2G perspective for smart grid development

, ORCID Icon &
Pages 4524-4542 | Received 01 Oct 2023, Accepted 05 Mar 2024, Published online: 22 Mar 2024

References

  • Abolfazli, M., M.H. Bahmani, S. Afsharnia and M.S. Ghazizadeh, 2011. A probabilistic method to model PHEV for participation in electricity market. In 2011 19th Iranian Conference on Electrical Engineering, Tehran, Iran, May 17–19. IEEE.
  • Bahmani, M. H., M. Abolfazli, S. Afsharnia and M.S. Ghazizadeh. 2011. Introducing a new concept to utilize plug-in electric vehicles in frequency regulation service. In The 2nd International Conference on Control, Instrumentation and Automation, Shiraz, Iran, 27–29 December. IEEE.
  • Bahmani, M. H., M. R. Haghifam, and M. Miri Larimi. 2018. Developing policy schemes towards grid-scale Microgrids; discussing the Iranian case.
  • Bahmani, M. H., M. R. Haghifam, and S. M. Miri Larimi. 2019. Toward grid‐scale microgrids; evaluating the capacity of financial structures. IET Generation, Transmission & Distribution 13 (7):1057–1067. doi:10.1049/iet-gtd.2018.6047.
  • Bahmani, M. H., M. E. Shayan, and D. Fioriti. 2024. Assessing electric vehicles behavior in power networks: A non-stationary discrete Markov chain approach. Electric Power Systems Research 229:110106. doi:10.1016/j.epsr.2023.110106.
  • Bahmani, M. H., M. E. Shayan, and G. Lorenzini. 2023. A novel method based on a non-stationary discrete Markov chain for tracking variations in the quantity of reserved energy and the number of electric Vehicles. Journal of Engineering Thermophysics 32 (4):758–75. doi:10.1134/S1810232823040094.
  • Bas, E. 2019. An introduction to Markov chains. In Basics of probability and stochastic processes, ed. F. Ghasemzadeh, 179–98. Switzerland: Springer. doi:10.1007/978-3-030-32323-3.
  • Bertuccelli, L. F. and J. P. How. 2008. Estimation of non-stationary Markov chain transition models. In CDC 2008, 47th IEEE Conference on Decision and Control, Cancun, Mexico. IEEE.
  • Beyazıt, M. A., A. Taşcıkaraoğlu, and J. P. Catalão. 2022. Cost optimization of a microgrid considering vehicle-to-grid technology and demand response. Sustainable Energy, Grids and Networks 32:100924. doi:10.1016/j.segan.2022.100924.
  • Calearo, L., A. Thingvad, K. Suzuki, and M. Marinelli. 2019. Grid loading due to EV charging profiles based on pseudo-real driving pattern and user behavior. IEEE Transactions on Transportation Electrification 5 (3):683–94. doi:10.1109/TTE.2019.2921854.
  • Cao, Y., L. Huang, Y. Li, K. Jermsittiparsert, H. Ahmadi-Nezamabad, and S. Nojavan. 2020. Optimal scheduling of electric vehicles aggregator under market price uncertainty using robust optimization technique. International Journal of Electrical Power & Energy Systems 117:105628. doi:10.1016/j.ijepes.2019.105628.
  • Chapman, L. 2007. Transport and climate change: A review. Journal of Transport Geography 15 (5):354–367. doi:10.1016/j.jtrangeo.2006.11.008.
  • Chung, K. L. 1967. Markov chains. New York: Springer-Verlag.
  • Deng, J., C. Bae, A. Denlinger, and T. Miller. 2020. Electric vehicles batteries: Requirements and challenges. Joule 4 (3):511–15. doi:10.1016/j.joule.2020.01.013.
  • Fotouhi, Z., M.R. Hashemi, Narimani, H. and I.S. Bayram. 2019. A general model for EV drivers’ charging behavior. IEEE Transactions on Vehicular Technology 68(8):7368–82. doi:10.1109/TVT.2019.2923260.
  • Ge, X., L. Shi, Y. Fu, S. M. Muyeen, Z. Zhang, and H. He. 2020. Data-driven spatial-temporal prediction of electric vehicle load profile considering charging behavior. Electric Power Systems Research 187:106469. doi:10.1016/j.epsr.2020.106469.
  • Guille, C., and G. Gross. 2009. A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy 37 (11):4379–90. doi:10.1016/j.enpol.2009.05.053.
  • Guo, S., Z. Qiu, C. Xiao, H. Liao, Y. Huang, T. Lei, D. Wu, and Q. Jiang. 2021. A multi-level vehicle-to-grid optimal scheduling approach with EV economic dispatching model. Energy Reports 7:22–37. doi:10.1016/j.egyr.2021.10.058.
  • Harris, C. B., and M. E. Webber. 2012. A temporal assessment of vehicle use patterns and their impact on the provision of vehicle-to-grid services. Environmental Research Letters 7 (3):034033. doi:10.1088/1748-9326/7/3/034033.
  • Hosseini, S. S., A. Badri, and M. Parvania. 2014. A survey on mobile energy storage systems (MESS): Applications, challenges and solutions. Renewable and Sustainable Energy Reviews 40:161–70. doi:10.1016/j.rser.2014.07.183.
  • Jin, Y., B. Yu, M. Seo, and S. Han. 2020. Optimal aggregation design for massive V2G participation in energy market. IEEE Access 8:211794–808. doi:10.1109/ACCESS.2020.3039507.
  • Jones, C. B., W. Vining, M. Lave, T. Haines, C. Neuman, J. Bennett, and D. R. Scoffield. 2022. Impact of electric vehicle customer response to time-of-use rates on distribution power grids. Energy Reports 8:8225–35. doi:10.1016/j.egyr.2022.06.048.
  • Kempton, W., and A. Dhanju. 2006. Electric vehicles with V2G. Windtech International 2 (2):18.
  • Lauvergne, R., Y. Perez, M. Françon, and A. Tejeda De La Cruz. 2022. Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040. Applied Energy 326:120030. doi:10.1016/j.apenergy.2022.120030.
  • Lehtola, T., and A. Zahedi. 2019. Solar energy and wind power supply supported by storage technology: A review. Sustainable Energy Technologies and Assessments 35:25–31. doi:10.1016/j.seta.2019.05.013.
  • Ling, Z., C. R. Cherry, and Y. Wen. 2021. Determining the factors that influence electric vehicle adoption: A stated preference survey study in Beijing, China. Sustainability 13 (21):11719. doi:10.3390/su132111719.
  • Li, X., Z. Wang, L. Zhang, F. Sun, D. Cui, C. Hecht, J. Figgener, and D. U. Sauer. 2023. Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview. Energy 268:126647. doi:10.1016/j.energy.2023.126647.
  • Lopez, N. S., A. Allana, and J. B. M. Biona. 2021. Modeling electric vehicle charging demand with the effect of increasing EVSEs: A discrete event simulation-based model. Energies 14 (13):3734. doi:10.3390/en14133734.
  • Magdy, G., H. Ali, and D. Xu. 2021. A new synthetic inertia system based on electric vehicles to support the frequency stability of low-inertia modern power grids. Journal of Cleaner Production 297:126595. doi:10.1016/j.jclepro.2021.126595.
  • Mehdizadeh, M., T. Nordfjaern, and C. A. Klöckner. 2022. A systematic review of the agent-based modelling/simulation paradigm in mobility transition. Technological Forecasting and Social Change 184:122011. doi:10.1016/j.techfore.2022.122011.
  • Mitrakoudis, S. G., and M. C. Alexiadis. 2022. Modelling electric vehicle charge demand: Implementation for the Greek power system. World Electric Vehicle Journal 13 (7):115. doi:10.3390/wevj13070115.
  • Mutny, M., T. Janik, and A. Krause. 2023. Active exploration via experiment design in Markov chains. In International Conference on Artificial Intelligence and Statistics, Valencia, Spain, April 25–27. PMLR.
  • Norris, J. R. 1998. Markov chains. Cambridge, United Kingdom: Cambridge university press.
  • Nystrup, P., H. Madsen, and E. Lindström. 2017. Long memory of financial time series and hidden Markov models with time‐varying parameters. Journal of Forecasting 36 (8):989–1002. doi:10.1002/for.2447.
  • Qamar, M. Z., W. Ali, M.O. Qamar and M. Noor. 2021. “Green technology and its implications worldwide.” The Inquisitive Meridian 3:1–11.
  • Rajagopalan, P., J. Thornby, and P. Ranganathan. 2023. Short-term electric vehicle demand forecasts and vehicle-to-grid (V2G) idle-time estimation using machine learning. In 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, March 8–11. IEEE.
  • Rajasekaran, A. S., M. Azees, and F. Al-Turjman. 2022. A comprehensive survey on security issues in vehicle-to-grid networks. Journal of Control and Decision 10 (2):1–10. doi:10.1080/23307706.2021.2021113.
  • Revuz, D. 2008. Markov chains. New York, USA: Elsevier.
  • Scott, C., M. Ahsan, and A. Albarbar. 2021. Machine learning based vehicle to grid strategy for improving the energy performance of public buildings. Sustainability 13 (7):4003. doi:10.3390/su13074003.
  • Shahriar, S., AR. Al-Ali, Osman AH., S. Dhou, M. Nijim. 2020. Machine learning approaches for EV charging behavior: A review. IEEE Access 8:168980–93.
  • Shariff, S. M., D. Iqbal, M.S. Alam and F. Ahmad. 2019. A state of the art review of electric vehicle to grid (V2G) technology. In IOP Conference Series: Materials Science and Engineering, Tamil Nadu, India. IOP Publishing.
  • Shen, Z.-J. M., B. Feng, C. Mao, and L. Ran. 2019. Optimization models for electric vehicle service operations: A literature review. Transportation Research Part B: Methodological 128:462–77. doi:10.1016/j.trb.2019.08.006.
  • Shipman, R., R. Roberts, J. Waldron, S. Naylor, J. Pinchin, L. Rodrigues, and M. Gillott. 2021. We got the power: Predicting available capacity for vehicle-to-grid services using a deep recurrent neural network. Energy 221:119813. doi:10.1016/j.energy.2021.119813.
  • Shom, S., A. Guha, K.F. Tsang, H.Nishi, C.K. Wu, K. Shuaib, Sharif, H. and M. Alahmad. 2022. Survey of protocols for V2G communications. In 2022 IEEE International Conference on Industrial Technology (ICIT), Shanghai, China. IEEE.
  • Veilleux, G., T. Potisat, D. Pezim, C. Ribback, J. Ling, A. Krysztofiński, A. Ahmed, J. Papenheim, A. M. Pineda, S. Sembian, et al. 2020. Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study. Energy for Sustainable Development 54:1–13. doi:10.1016/j.esd.2019.09.007.
  • Vishnu, G., D. Kaliyaperumal, R. Jayaprakash, A. Karthick, V. Kumar Chinnaiyan, and A. Ghosh. 2023. Review of challenges and opportunities in the integration of electric vehicles to the grid. World Electric Vehicle Journal 14 (9):259. doi:10.3390/wevj14090259.
  • Young, P. 1994. Time variable and state dependent modelling of nonstationary and nonlinear time series. In Developments in Time Series Analysis, 374–413. New Jersey, USA: Chapman and Hall. doi:10.1002/for.3980130210.
  • Yu, H., S. Niu, Y. Shang, Z. Shao, Y. Jia, and L. Jian. 2022. Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications. Renewable and Sustainable Energy Reviews 168:112812. doi:10.1016/j.rser.2022.112812.
  • Zecchino, A., A. M. Prostejovsky, C. Ziras, and M. Marinelli. 2019. Large-scale provision of frequency control via V2G: The Bornholm power system case. Electric Power Systems Research 170:25–34. doi:10.1016/j.epsr.2018.12.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.