32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of an additive using tannic acid for enhancing rheological properties of coal-water slurry

ORCID Icon, , , &
Pages 4514-4523 | Received 17 Nov 2023, Accepted 09 Mar 2024, Published online: 21 Mar 2024

References

  • Chen, X., C. Wang, Z. Wang, H. Zhao, and H. Liu. 2019. Preparation of high concentration coal water slurry of lignite based on surface modification using the second fluid and the second particle. Fuel 242:788–793. doi:10.1016/j.fuel.2019.01.007.
  • Dmitrienko, M. A., G. S. Nyashina, P. A. Strizhak. 2017. Environmental indicators of the combustion of prospective coal water slurry containing petrochemicals. Journal of Hazardous Materials 338:148–159. doi:10.1016/j.jhazmat.2017.05.031.
  • Du, L., G. Zhang, S. Hu, J. Luo, W. Zhang, C. Zhang, J. Li, and J. Zhu. 2021. Upgrade of low-rank coal by using emulsified asphalt and its application for preparation of coal water slurry with high concentration. Journal of Dispersion Science and Technology 44 (6):901–10. doi:10.1080/01932691.2021.1979998.
  • Gvozdyakov, D. V., A. V. Zenkov, and A. Z. Kaltaev. 2022. Characteristics of spraying and ignition of coal-water fuels based on lignite and liquid pyrolysis products of wood waste. Energy 257:257. doi:10.1016/j.energy.2022.124813.
  • Jiang, X., S. Chen, L. Cui, E. Xu, H. Chen, X. Meng, and G. Wu. 2022. Eco-friendly utilization of microplastics for preparing coal water slurry: Rheological behavior and dispersion mechanism. Journal of Cleaner Production 330:129881. doi:10.1016/j.jclepro.2021.129881.
  • Jiang, X., Y. Zhou, X. Meng, G. Wu, Z. Miao, F. Sun, and E. Xu. 2023. The effect of inorganic salt modification of sludge on the performance of sludge-coal water slurry. Colloids and Surfaces A: Physicochemical and Engineering Aspects 664:664. doi:10.1016/j.colsurfa.2023.131146.
  • Kurgankina, M. A., G. S. Nyashina, P. A. Strizhak. 2019. Prospects of thermal power plants switching from traditional fuels to coal-water slurries containing petrochemicals. Science of the Total Environment 671:568–577. doi:10.1016/j.scitotenv.2019.03.349.
  • Li, D., B. Feng, C. Xu, C. Chen, J. Wang, and H. Huang. 2023. Study on the slurrying mechanism of coal water slurry prepared from coal gasification wastewater. The Canadian Journal of Chemical Engineering 102 (1):143–51. doi:10.1002/cjce.25039.
  • Li, L., C. Ma, M. Lin, M. Liu, H. Yu, Q. Wang, X. Cao, X. You. 2021. Study of sodium lignosulfonate prepare low-rank coal-water slurry: Experiments and simulations. Chinese Journal of Chemical Engineering 29:344–353. doi:10.1016/j.cjche.2020.07.064.
  • Li, X., C. Ma, J. Lyu, M. He, J. Wang, Q. Wang, Z. Wang, X. You, L. Li. 2022. Influence and mechanism of alkali-modified sludge on coal water slurry properties. Environmental Science and Pollution Research 30 (10):27372–27381. doi:10.1007/s11356-022-24042-0.
  • Liu, X., J. Gong, K. Jiang, X. Lai, Y. Tian, and K. Zhang. 2024. Fabrication and evaluation of novel amphiphilic star block copolymers for increasing free water content in lignite to make coal-water slurries. Powder Technology 431:119117. doi:10.1016/j.powtec.2023.119117.
  • Liu, J., J. Wang, C. Chen, Y. Chen, and X. Zheng. 2023. Preparing coal slurry from organic wastewater to achieve resource utilization: Slurrying performance and dispersant suitability. Fuel 339:339. doi:10.1016/j.fuel.2022.126970.
  • Li, L., L. Zhao, Y. Wang; J. Wu, G. Meng, Z. Liu, J. Zhang, B. Hu, Q. He, X. Guo. 2018. Novel dispersant with a three-dimensional reticulated structure for a coal–water slurry. Energy & Fuels 32 (8):8310–8317. doi:10.1021/acs.energyfuels.8b01768.
  • Nyashina, G. S., G. V. Kuznetsov, P. A. Strizhak. 2018. Energy efficiency and environmental aspects of the combustion of coal-water slurries with and without petrochemicals. Journal of Cleaner Production 172:1730–1738. doi:10.1016/j.jclepro.2017.12.023.
  • Park, J.-H., Y.-J. Lee, M.-H. Jin, S.-J. Park, D.-W. Lee, J.-S. Bae, J.-G. Kim, K. H. Song, and Y.-C. Choi. 2017. Enhancement of slurryability and heating value of Coal Water Slurry (CWS) by torrefaction treatment of Low-Rank Coal (LRC). Fuel 203:607–17. doi:10.1016/j.fuel.2017.03.016.
  • Qi, Y., L. Zhang, S. Zhang, Q. Cao, F. Guo, Z. Wang, and Q. Cao. 2023. Synthesis and performance of a novel bio-oil-based dispersant as coal water slurry. Fuel 337:337. doi:10.1016/j.fuel.2022.126883.
  • Shen, Min, Liu, Xue, and Zhu, 2019. Improving coal flotation by gaseous collector pretreatment method and its potential application in preparing coal water slurry. Processes 7 (8):500. doi:10.3390/pr7080500.
  • Shen, L., C. Wang, F. Min, L. Liu, and C. Xue. 2020. Effect of pores on the flotation of low-rank coal: An experiment and simulation study. Fuel 271:117557. doi:10.1016/j.fuel.2020.117557.
  • Singh, H., S. Kumar, and S. K. Mohapatra. 2020. Improved surface morphology by reforming of oxygen functional groups of Indian coal upon irradiating with microwave radiations. International Journal of Coal Preparation and Utilization 42 (6):1740–58. doi:10.1080/19392699.2020.1760854.
  • Tian, X.-H., D.-Z. Song, X.-Q. He, H.-F. Liu, W.-X. Wang, Z.-L. Li. 2019. Surface microtopography and micromechanics of various rank coals. International Journal of Minerals, Metallurgy and Materials 26 (11):1351–1363. doi:10.1007/s12613-019-1879-5.
  • Wang, S., J. Liu, S. V. Pisupati, D. Li, Z. Wang, and J. Cheng. 2021. Dispersion mechanism of coal water slurry prepared by mixing various high-concentration organic waste liquids. Fuel 287:287. doi:10.1016/j.fuel.2020.119340.
  • Xu, E., S. Chen, Y. Dong, Z. Miao, X. Jiang, L. Cui, X. Meng, and G. Wu. 2021. The effect of isoamyl alcohol and sec-octyl alcohol on the viscosity of coal water slurry. Fuel 292:120394. doi:10.1016/j.fuel.2021.120394.
  • Zhai, J., R. Xu, Q. He, S. Pan, X. Wang, R. Zhang, Y. Feng, B. Hu. 2023. Degradation and filling modification of plastic waste for improvement of the slurryability of coal-plastic-water slurry. Fuel 344:128137. doi:10.1016/j.fuel.2023.128137.
  • Zhang, K., J. Ma, B. Lyu, G. Shi, B. Zhou, and Y. Tian. 2020. Influence of “tentacle structure” on the properties of jellyfish-like 3D dispersants based on tannic acid for preparing high-concentrated coal–water slurry. Fuel 274:117860. doi:10.1016/j.fuel.2020.117860.
  • Zhou, M., D. Yang, X. Qiu. 2008. Influence of dispersant on bound water content in coal–water slurry and its quantitative determination. Energy Conversion and Management 49 (11):3063–3068. doi:10.1016/j.enconman.2008.06.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.