29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rated load state performance assessment and analysis of ultra-supercritical coal-fired power plant

ORCID Icon, , , ORCID Icon &
Pages 4579-4592 | Received 12 Jan 2024, Accepted 26 Feb 2024, Published online: 22 Mar 2024

References

  • Ahmad Sammour, A., O. V. Komarov, M. A. Qasim, S. Almalghouj, A. Mazen Al Dakkak, and Y. Du. 2023. Ambient conditions impact on combined cycle gas turbine power plant performance, energy sources, part A: Recovery. Utilization, and Environmental Effects 45 (1):557–74. doi:10.1080/15567036.2023.2172100.
  • Angui, Z., L. Jiping, Z. Zhonghua, et al. 2023. Operation problems of ammonia desulfurization plant and solutions. Energy Science and Technology 21 (1):67–70.
  • Camaraza-Medina, Y., Y. Retirado-Mediaceja, A. Hernandez-Guerrero, and J. Luis Luviano-Ortiz. 2021. Energy efficiency indicators of the steam boiler in a power plant of Cuba. Thermal Science and Engineering Progress 23:100880. ISSN 2451-9049. doi:10.1016/j.tsep.2021.100880.
  • Chandrakant Nikam, K., R. Kumar, and R. Jilte. 2020. Thermodynamic modeling and performance evaluation of a supercritical coal-fired power plant situated in Western India, energy sources, part A: Recovery. Utilization, and Environmental Effects. doi:10.1080/15567036.2020.1806410.
  • Chen, H., M. Zhang, Y. Wu, G. Xu, and W. Liu. 2020. Tong Liu, design and performance evaluation of a new waste incineration power system integrated with a supercritical CO2 power cycle and a coal-fired power plant. Energy Conversion and Management 210:112715. ISSN 0196-8904. doi:10.1016/j.enconman.2020.112715.
  • Dianfa, W. 2019. General energy consumption evaluation methods of large coal-fired power generation units[D]. Beijing: North China Electric Power University. doi:10.27140/d.cnki.ghbbu.2019.000028.
  • Filiz Tumen Ozdil, N., A. Tantekin, and A. Pekdur. 2020. Thermodynamic, economic and environmental assessments in a cogeneration power plant, energy sources, part A: Recovery. Utilization, and Environmental Effects 1–21. doi:10.1080/15567036.2020.1754532.
  • Gao, J. 2005. Fuzzy AHP synthetical appraise method and application[D]. Tianjin: Tianjin University.
  • Guangshui, Z., L. Wenbo, and R. Ma. 2021. Research on the safety evaluation of ash dams in coal-fired power plants based on fuzzy mathematics. Safety and Health (9):66–68. (in Chinese).
  • Haihua, C., S. Weifeng, Z. Xiaoxin, H. Danhua, Y. Tianbao, and S. Wenyan. 2022. Evaluation method of power source reaching service term based on fuzzy analytical hierarchy process and the entropy weight method. Journal of Power Supply:1–13. (in Chinese).
  • Hong, F., J. Chen, R. Wang, D. Long, H. Yu, and M. Gao. 2021. Realization and performance evaluation for long-term low-load operation of a CFB boiler unit. Energy 214:118877. ISSN 0360-5442. doi:10.1016/j.energy.2020.118877.
  • Jagtap, H., A. Bewoor, R. Kumar, M. Hossein Ahmadi, and G. Lorenzini. 2020. Markov-based performance evaluation and availability optimization of the boiler–furnace system in coal-fired thermal power plant using PSO. Energy Reports 6:1124–34. ISSN 2352-4847. doi:10.1016/j.egyr.2020.04.028.
  • Jianzhong, L. 1992. Reasons for high power consumption in powder production systems and measures to reduce power consumption. North China Electric Power 12:13–16.
  • Jifang, W., and L. Zhengding. 2000. The determine method of membership function in fuzzy control. Henan Sciences (4):348–51. doi:10.13537/j.issn.1004-3918.2000.04.005. (in Chinese).
  • Kabeyi, M., and O. Olanrewaju. 2021. Performance analysis and evaluation of muhoroni 60MW gas turbine power plant. 1–8. doi:10.1109/ICECCME52200.2021.9591134.
  • Kabiri, S., M. Hasan Khoshgoftar Manesh, and M. Amidpour. 2020. 4E analysis and evaluation of a steam power plant full repowering in various operations, energy sources, part A: Recovery. Utilization, and Environmental Effects 1–21. doi:10.1080/15567036.2020.1761484.
  • Kun, L. 2023. Analysis of the application of environmental protection technologies in ultra-supercritical 1000MW thermal power units. Electrical Equipment and Economy 8:87–89. doi:10.3969/j.issn.1673-8845.2023.08.030.
  • Lin, L., and W. Yunfei. 2023. Research on the ecological construction of forestry in Northeast China based on AHP-Fuzzy comprehensive evaluation method. Forest Engineering 39 (3):82–90. (in Chinese). doi:10.3969/j.issn.1006-8023.2023.03.010.
  • Miaoyuan, W., H. Jieping, and N. Yiheng. 2022. Comprehensive benefit assessment of CCUS project for coal-fired power plants based on AHP-Fuzzy comprehensive evaluation approach. Technology and Industry Across the Straits 35 (7):88–91. (in Chinese). doi:10.3969/j.issn.1006-3013.2022.07.023.
  • Si, T., C. Wang, R. Liu, Y. Guo, S. Yue, and Y. Ren. 2020. Multi-criteria comprehensive energy efficiency assessment based on fuzzy-AHP method: A case study of post-treatment technologies for coal-fired units. Energy 200 (117533):117533. doi:10.1016/j.energy.2020.117533. ISSN 0360-5442
  • Thomas, L. S. 2013. The modern science of multicriteria decision making and its practical applications: The AHP/ANP approach. Operations Research 61 (5):1101–18. doi:10.1287/opre.2013.1197.
  • Tiantian, H., L. Changxing, W. Shengjie, and G. Yifan. 2021. Comprehensive evaluation of mine geological environment based on multiplicative integration method and fuzzy comprehensive evaluation method. China Energy and Environmental Protection 43 (7):31–37. (in Chinese). doi:10.19389/j.cnki.1003-0506.2021.07.006.
  • Uma Maheswari, G., N. Shankar Ganesh, T. Srinivas, and B. V. Reddy. 2023. Exergoenvironmental evaluation of kalina power generation system, energy sources, part A: Recovery. Utilization, and Environmental Effects 45 (1):3170–88. doi:10.1080/15567036.2023.2193160.
  • Wang, L., P. Fu, Z. Yang, T.-E. Lin, and Y. Yang. 2020. George Tsatsaronis, Advanced Exergoeconomic Evaluation of Large-Scale Coal-Fired Power Plant, 2020. Journal of Energy Engineering 146 (1):1. doi:10.1061/(ASCE)EY.1943-7897.0000633.
  • Xiang, L., and N. Sai. 2021. Study on multi-layer evaluation system of source-grid-load under carbon-neutral goal. Proceedings of the CSEE 41 (S1):178–84. (in Chinese). doi:10.13334/j.0258-8013.pcsee.211576.
  • Yan, L., W. Jie, W. Shaorong, C. Feng, Z. Xu, and T. Jing. 2018. Research on evaluation indices of new energy generation characteristics and membership functions. Power System Protection and Control 46 (8):43–49. (in Chinese). doi:10.7667/PSPC170462.
  • Yongjun, L., and B. Qingfei. 2021. Evaluation of thermal power plant operation index based on combined weight and TOPSIS method. Shandong Electric Power 48 (8):61–65. (in Chinese). doi:10.3969/j.issn.1007-9904.2021.08.011.
  • Yongping, Y., W. Dianfa, and W. Ningling. 2016. Comprehensive evaluation for large scale coal-fired power units based on combined weight and TOPSIS method. Thermal Power Generation 45 (2):10–15. in Chinese. doi:10.3969/j.issn.1002-3364.2016.02.010.
  • Yu, Z., and T. Liang. 2023. Comprehensive evaluation of operation of thermal power units based on PCA and improved TOPSIS method. Journal of North China Electric Power University 50 (3):110–6+26. (in Chinese). doi:10.3969/j.ISSN.1007-2691.2023.03.11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.