33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of the impact of sodium dodecylbenzene sulfonate modification on the wettability of coking coal

, , , &
Pages 4566-4578 | Received 24 Mar 2023, Accepted 01 Sep 2023, Published online: 22 Mar 2024

References

  • Bao, Q., W. Nie, W. J. Niu, I. F. Mwabaima, Q. F. Tian, and R. X. Li. 2023. Molecular simulation and wetting study on the mechanism and capability of hydrophilic surfactants used as spray dust suppressants for dust reduction in coal mines. Sustainable Chemistry and Pharmacy 36 :101253 doi:10.1016/j.scp.2023.101253.
  • Chang, P., G. Xu, Y. P. Chen, and Y. W. Liu. 2022. Experimental evaluation of the surfactant adsorptions performance on coal particles with different properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 648:129408. doi:10.1016/J.COLSURFA.2022.129408.
  • Crawford, R. J., and D. E. Mainwaring. 2001. The influence of surfactant adsorption on the surface characterisation of Australian coals. Fuel 80 (3):313–320. doi:10.1016/S0016-2361(00)00110-1.
  • Cummings, J., K. Shah, R. Atkin, and B. Moghtaderi. 2015. Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel 143:244–252. doi:10.1016/j.fuel.2014.11.042.
  • Dai, C. L., J. C. Fang, Q. F. Ding, T. Wang, M. W. Zhao, and Y. N. Wu. 2018. Study on adsorption characteristic of novel nonionic fluorocarbon surfactant (4-hydroxyethyl ether) (pentadecafluoro-alkyl) amide at coal-water interface. Colloid and Polymer Science 296 (1):21–30. doi:10.1007/s00396-017-4207-5.
  • Han, W. B., G. Zhou, Q. T. Zhang, and D. Liu. 2020. Experimental study on modification of physicochemical characteristics of acidified coal by surfactants and ionic liquids. Fuel 266 (C):116966. doi:10.1016/j.fuel.2019.116966.
  • Liao, X. X., B. Wang, L. Wang, J. T. Zhu, P. Chu, Z. B. Zhu, and S. W. Zheng. 2021. Experimental study on the wettability of coal with different metamorphism treated by surfactants for coal dust control. American Chemical Society Omega 6 (34):21925–38. doi:10.1021/ACSOMEGA.1C02205.
  • LI, G., J. H. Hu, and S. Q. Chen. 2023. A review of dust control/removal methods in metal mines in China. Powder Technology 430: 119035. doi:10.1016/j.powtec.2023.119035.
  • Lin, J., D. Fridley, H. Y. Lu, L. Price and N. Zhou. 2018. Has coal use peaked in China: Near-term trends in China’s coal consumption. Energy Policy 123: 208–14. doi:10.1016/j.enpol.2018.08.058.
  • Liu, G. M., Q. Q. Xu, J. P. Zhao, W. Nie, Q. K. Guo, and G. G. Ma. 2021. Research Status of Pathogenesis of Pneumoconiosis and Dust Control Technology in Mine—A Review. Applied Sciences 11 (21):10313. doi:10.3390/app112110313.
  • Lu, Z. L., Z. Wei, Y. H. Xu, and H. L. Wang. 2016. Numerical simulation and parameter optimization of the air curtain dust-collecting system. Journal of Computational and Theoretical Nanoscience 13 (10):6463–6467. doi:10.1166/jctn.2016.5587.
  • Ma, Q. X., W. Nie, S. B. Yang, C. W. Xu, H. T. Peng, Z. Q. Liu, C. Guo, and X. J. Cai. 2020. Effect of spraying on coal dust diffusion in a coal mine based on a numerical simulation. Environmental Pollution 264: 114717. doi:10.1016/j.envpol.2020.114717.
  • Mishra, D. P., and S. Azam. 2018. Experimental investigation on effects of particle size, dust concentration and dust-dispersion-air pressure on minimum ignition temperature and combustion process of coal dust clouds in a G-G furnace. Fuel 227: 424–33. doi:10.1016/j.fuel.2018.04.122.
  • Ni, G. H., H. C. Xie, S. Li, and N. Wang. 2019. The effect of anionic surfactant (SDS) on pore-fracture evolution of acidified coal and its significance for coalbed methane extraction. Advanced Powder Technology 30 (5):940–51. doi:10.1016/j.apt.2019.02.008.
  • Qiao, L., C. B. Deng, X. Zhang, X. F. Wang, and F. W. Dai. 2018. Effect of soaking on coal oxidation activation energy and thermal effect. Journal of China Coal Society 43 (9):2518–24. doi:10.13225/j.cnki.jccs.2017.1443.
  • Stefanenko, I. V., V. N. Azarov, and D. P. Borovkov. 2019. Experimental optimization of dust collecting equipment parameters of counter swirling flow with coaxial leadthrough for air ventilation system and dust elimination. IOP Conference Series: Earth and Environmental Science 224 (1):012037. doi:10.1088/1755-1315/224/1/012037.
  • Taraba, A., and K. Szymczyk. 2017. Study of the influence of the binary mixtures of fluorocarbon surfactants on the surface tension of water. Annales Universitatis Mariae Curie-Sklodowska, Sectio AA – Chemia 72 (1):111. doi:10.17951/aa.2017.72.1.111.
  • Wang, X. N., S. J. Yuan, and B. Y. Jiang. 2019. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples. Advanced Powder Technology 30 (8):1696–1708. doi:10.1016/j.apt.2019.05.021.
  • Wang, H. T., L. Zhang, D. M. Wang, X. X. He. 2017. Experimental investigation on the wettability of respirable coal dust based on infrared spectroscopy and contact angle analysis. Advanced Powder Technology 28 (12):3130–39. doi:10.1016/j.apt.2017.09.018.
  • Wang, C. M., G. Zhou, W. J. Jiang, C. X. Niu, and Y. F. Xue. 2021. Preparation and performance analysis of bisamido-based cationic surfactant fracturing fluid for coal seam water injection. Journal of Molecular Liquids 332:115806. doi:10.1016/J.MOLLIQ.2021.115806.
  • Wang, Z. M., W. Zhou, I. M. Jiskani, X. H. Ding, and H. T. Luo. 2022. Dust pollution in cold region surface mines and its prevention and control. Environmental Pollution 292 (PA):118293. doi:10.1016/J.ENVPOL.2021.118293.
  • Xia, W. C., C. Ni, and G. Y. Xie. 2016. The influence of surface roughness on wettability of natural/gold-coated ultra-low ash coal particles. Powder Technology 288:286–90. doi:10.1016/j.powtec.2015.11.029.
  • Xiu, Z. H., W. Nie, P. Cai, D. W. Chen, and X. Zhang. 2022. Partially enclosed air curtain dust control technology to prevent pollution in a fully mechanized mining face. Journal of Environmental Chemical Engineering 10 (5):108326. doi:10.1016/J.JECE.2022.108326.
  • Xu, L. M., Y. J. Li, L. L. Du, F. S. Yang, R. J. Zhang, H. Wei, G. Wang, and Z. Hao. 2023. Study on the effect of SDBS and SDS on deep coal seam water injection. Science of the Total Environment 856 (2):158930. doi:10.1016/J.SCITOTENV.2022.158930.
  • Yang, L., S. C. Ge, Z. H. Huang, D. J. Jing, and X. Chen. 2021. The influence of surfactant on the wettability of coal dust and dust reduction efficiency. Arabian Journal of Geosciences 14: 1336. doi: 10.1007/S12517-021-07570-W.
  • Yao, Q. G., C. C. Xu, Y. S. Zhang, G. Zhou, S. C. Zhang, and D. Wang. 2017. Micromechanism of coal dust wettability and its effect on the selection and development of dust suppressants. Process Safety and Environmental Protection 111:726–32. doi:10.1016/j.psep.2017.08.037.
  • Yuan, X. H., G. G. Wu, S. Q. Chen, P. F. Wang, and S. L. Li. 2022. Investigation of optimal selection and atomizing characteristics of nozzles for ultrasonic dry-mist dust suppression system. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 44 (3):7046–61. doi:10.1080/15567036.2022.2088901.
  • Zhang, H., W. H. Han, Y. L. Xu, and Z. F. Wang. 2021. Analysis on the Development Status of Coal Mine Dust Disaster Prevention Technology in China. Journal of Healthcare Engineering 2021: 5574579. doi:10.1155/2021/5574579.
  • Zhou, Q., B. T. Qin, H. Z. Li, and J. Hou. 2022. Changes of physical properties of coal dust with crush degrees and their effects on dust control ability of the surfactant solution spray. Environmental Science and Pollution Research International 29 (22):33785–33795. doi:10.1007/S11356-021-17832-5.
  • Zhou, G., H. Qiu, Q. Zhang, M. Xu, G. Y. Wang, and G. Wang.2016. Experimental Investigation of Coal Dust Wettability Based on Surface Contact Angle. Journal of Chemistry 2016:9452303. doi:10.1155/2016/9452303.
  • Zhou, G., D. M. Wang, W. M. Cheng, G. Pan, and S. Cao. 2012. Research of ventilation and dust removal technology for whole rock fully-mechanized excavation face. Advanced Materials Research 476-478 (476):1297–304. doi:10.4028/www.scientific.net/AMR.476-478.1297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.