47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Heat transfer characteristics of pulsating flow in a straight channel with rhombic-shaped expanding chamber: A numerical study

ORCID Icon
Pages 4608-4627 | Received 14 Dec 2023, Accepted 17 Mar 2024, Published online: 26 Mar 2024

References

  • Abdelghany, M. T., S. M. Elshamy, M. A. Sharafeldin, and O. E. Abdellatif. 2023. Experimental investigation on the effect of pulsating flow on heat transfer and pressure drop in conical tubes. Journal of Thermal Analysis and Calorimetry 148 (13):6169–82. doi:10.1007/s10973-023-12171-8.
  • Abed, A. M., M. A. Alghoul, K. Sopian, H. A. Mohammed, and A. N. Al-Shamani. 2015. Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chemical Engineering and Processing: Process Intensification 87:88–103. doi:10.1016/j.cep.2014.11.005.
  • Afaynou, I., H. Faraji, K. Choukairy, A. Arshad, and M. Arıcı. 2023. Heat transfer enhancement of Phase-Change Materials (PCMs) based thermal management systems for electronic components: A review of recent advances. International Communications in Heat and Mass Transfer 143:106690. doi:10.1016/j.icheatmasstransfer.2023.106690.
  • Ahmad, F., S. Mahmud, M. M. Ehsan, and M. Salehin. 2023. Numerical assessment of nanofluids in corrugated minichannels: Flow phenomenon and advanced thermo-hydrodynamic analysis. International Journal of Thermofluids 20:100449. doi:10.1016/j.ijft.2023.100449.
  • Ahmed, M. A., M. Z. Yusoff, K. C. Ng, and N. H. Shuaib. 2015. Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2-water nanofluid, case stud. Thermal Engineering 6:77–99. doi:10.1016/j.csite.2015.07.003.
  • Ajarostaghi, S. S. M., M. Zaboli, H. Javadi, B. Badenes, and J. F. Urchueguia. 2022. A review of recent passive heat transfer enhancement methods. Energies 15 (3):986. doi:10.3390/en15030986.
  • Ajeel, R. K., W. I. Salim, and K. Hasnan. 2019. Design characteristics of symmetrical semicircle- corrugated channel on heat transfer enhancement with nanofluid. International Journal of Mechanical Sciences 151:236–50. doi:10.1016/j.ijmecsci.2018.11.022.
  • Ajeel, R. K., W.-I. Salim, and K. Hasnan. 2019. Thermal performance comparison of various corrugated channels using nanofluid: Numerical study. Alexandria Engineering Journal 58 (1):75–87. doi:10.1016/j.aej.2018.12.009.
  • Ajeel, R. K., W. I. Salim, K. Sopian, M. Z. Yusoff, K. Hasnan, A. Ibrahim, and A. H. Al- Waeli. 2019. Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: An experimental and numerical study. International Journal of Heat and Mass Transfer 145:118806. doi:10.1016/j.ijheatmasstransfer.2019.118806.
  • Akbarzadeh, M., S. Rashidi, and J. A. Esfahani. 2017. Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel. Applied Thermal Engineering 116:278–291. doi:10.1016/j.applthermaleng.2017.01.076.
  • Akcay, S. 2023. Heat transfer analysis of pulsating nanofluid flow in a semicircular wavy channel with baffles. Sādhanā 48 (2):57. doi:10.1007/s12046-023-02119-x.
  • Akcay, S., and U. Akdag. 2023. Heat transfer enhancement in a channel with inclined baffles under pulsating flow: A CFD study. Journal of Enhanced Heat Transfer 30 (5):61–79. doi:10.1615/JEnhHeatTransf.2023047227.
  • Aktas, M. K., O. Baser, and S. R. Angeneh. 2020. Effects of pulsating flow on convection in wavy channels with phase shift. Heat Transfer Research 51 (9):865–78. doi:10.1615/HeatTransRes.2020033922.
  • Alam, T., and M. H. Kim. 2018. A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications. Renewable and Sustainable Energy Reviews 81:813–39. doi:10.1016/j.rser.2017.08.060.
  • ANSYS Inc. 2015. ANSYS fluent user guide & theory guide release 15.0. USA.
  • Brodniansk´a, Z., and S. Kotˇsmíd. 2023. Heat transfer enhancement in the novel wavy shaped heat exchanger channel with cylindrical vortex generators. Applied Thermal Engineering 220:119720. doi:10.1016/j.applthermaleng.2022.119720.
  • Cengel, Y. A. 2010. Fluid mechanics. New York: Tata McGraw-Hill Education.
  • Feng, C.-N., C.-H. Liang, and Z.-X. Li. 2022. Friction factor and heat transfer evaluation of cross-corrugated triangular flow channels with trapezoidal baffles. Energy & Buildings 257:111816. doi:10.1016/j.enbuild.2021.111816.
  • Haridas, D., V. Singh, and A. Srivastava. 2020. An experimental investigation of heat transfer performance of wavy channels under laminar flow conditions: An interferometric study. Journal of Enhanced Heat Transfer 27 (6):561–576. doi:10.1615/JEnhHeatTransf.2020034450.
  • Hoang, V. Q., T. T. Hoang, C. T. Dinh, and F. Plourde. 2021. Large eddy simulation of the turbulence heat and mass transfer of pulsating flow in a V-sharp corrugated channel. International Journal of Heat and Mass Transfer 166:120720. doi:10.1016/j.ijheatmasstransfer.2020.120720.
  • Huang, H., Y. Bian, Y. Liu, F. Zhang, H. Arima, and Y. Ikegami. 2018. Numerical and experimental analysis of heat transfer enhancement and pressure drop characteristics of laminar pulsatile flow in grooved channel with different groove lengths. Applied Thermal Engineering 137:632–43. doi:10.1016/j.applthermaleng.2018.04.013.
  • Ibrahim, K. A., P. Luk, and Z. Luo. 2023. Cooling of concentrated photovoltaic cells—A review and the perspective of pulsating flow cooling. Energies 16 (6):2842. doi:10.3390/en16062842.
  • Jin, D. X., Y. P. Lee, and D. Y. Lee. 2007. Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel. International Journal of Heat and Mass Transfer 50 (15–16):3062–3071. doi:10.1016/j.ijheatmasstransfer.2006.12.001.
  • Khodabandeh, E., S. A. Rozati, M. Joshaghani, O. A. Akbari, S. Akbari, and D. Toghraie. 2019. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. Journal of Thermal Analysis and Calorimetry 136 (3):1333–45. doi:10.1007/s10973-018-7826-2.
  • Khoshvaght-Aliabadi, M. 2014. Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Conversion and Management 88:96–105. doi:10.1016/j.enconman.2014.08.042.
  • Krishnan, E. N., H. Ramin, A. Guruabalan, and C. J. Simonson. 2021. Experimental investigation on thermo-hydraulic performance of triangular cross-corrugated flow passages. International Communications in Heat and Mass Transfer 122:105160. doi:10.1016/j.icheatmasstransfer.2021.105160.
  • Kumar, K., R. Kumar, R. S. Bharj, and P. K. Mondal. 2021. Irreversibility analysis of the convective flow through corrugated channels: A comprehensive review. European Physics Journal Plus 136 (4):1–40. doi:10.1140/epjp/s13360-021-01388-x.
  • Kurtulmus, N., and B. Sahin. 2019. A review of hydrodynamics and heat transfer through corrugated channels. International Communications in Heat and Mass Transfer 108:104307. doi:10.1016/j.icheatmasstransfer.2019.104307.
  • Kurtulmus, N., and B. Sahin. 2020. Experimental investigation of pulsating flow structures and heat transfer characteristics in sinusoidal channels. International Journal of Mechanical Sciences 167:105268. doi:10.1016/J.IJMECSCI.2019.105268.
  • Li, Y., Q. Yu, S. Yu, P. Zhang, and J. Zhang. 2023. Numerical investigation and mechanism analysis of heat transfer enhancement in a helical tube by square wave pulsating flow. Heat and Mass Transfer 59 (1):21–37. doi:10.1007/s00231-022-03231-0.
  • Mehta, S. K., and S. Pati. 2019. Analysis of thermo-hydraulic performance and entropy generation characteristics for laminar flow through triangular corrugated channel. Journal of Thermal Analysis and Calorimetry 136 (1):49–62. doi:10.1007/s10973-018-7969-1.
  • Monfared, R. H., M. Niknejadi, D. Toghraie, and P. Barnoon. 2022. Numerical investigation of swirling flow and heat transfer of a nanofluid in a tube with helical ribs using a two-phase model. Journal of Thermal Analysis and Calorimetry 147 (4):3403–16. doi:10.1007/s10973-021-10661-1.
  • Naderifar, A., M. Nikian, K. Javaherdeh, and M. Borji. 2022. Numerical investigation of the effect of fins on heat transfer enhancement of a laminar non-Newtonian nanofluid flow through a corrugated channel. Journal of Thermal Analysis and Calorimetry 147 (17):9779–9791. doi:10.1007/s10973-022-11222-w.
  • Nakhchi, M. E. 2019. Experimental optimization of geometrical parameters on heat transfer and pressure drop inside sinusoidal wavy channels. Thermal Science and Engineering Progress 9:121–31. doi:10.1016/j.tsep.2018.11.006.
  • Nitturi, L. K., V. K. Kapu, R. Gugulothu, A. Kaleru, V. Vuyyuri, and A. Farid. 2023. Augmentation of heat transfer through passive techniques. Heat Transfer 52 (6):4422–49. doi:10.1002/htj.22877.
  • Pan, J., Y. Bian, Y. Liu, F. Zhang, Y. Yang, and H. Arima. 2020. Characteristics of flow behavior and heat transfer in the grooved channel for pulsatile flow with a reverse flow. International Journal of Heat and Mass Transfer 147:118932. doi:10.1016/j.ijheatmasstransfer.2019.118932.
  • Sofi, A. Y., and A. Qayoum. 2023. Numerical investigation of thermo-hydraulic performance and irreversibility behaviour in a pulsating turbulent flow ribbed duct. Arabian Journal for Science and Engineering 49 (2):1515–29. doi:10.1007/s13369-023-07902-w.
  • Varzaneh, A. A., D. Toghraie, and A. Karimipour. 2020. Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions. Journal of Thermal Analysis and Calorimetry 139 (1):701–20. doi:10.1007/s10973-019-08381-8.
  • Wang, G., C. Qia, M. Liu, C. Li, Y. Yan, and L. Liang. 2019. Effect of corrugation pitch on thermo-hydraulic performance of nanofluids in corrugated tubes of heat exchanger system based on exergy efficiency. Energy Conversion and Management 186:51–65. doi:10.1016/j.enconman.2019.02.046.
  • Ye, Q., Y. Zhang, and J. Wei. 2021. A comprehensive review of pulsating flow on heat transfer enhancement. Applied Thermal Engineering 196:117275. doi:10.1016/j.applthermaleng.2021.117275.
  • Zhang, L., and D. Che. 2011. Influence of corrugation profile on the thermal hydraulic performance of cross-corrugated plates. Numerical Heat Transfer, Part A: Applications 59 (4):267–96. doi:10.1080/10407782.2011.540963.
  • Zhang, J., X. Zhu, M. E. Mondejar, and F. Haglind. 2019. A review of heat transfer enhancement techniques in plate heat exchangers. Renewable and Sustainable Energy Reviews 101:305–328. doi:10.1016/j.rser.2018.11.017.
  • Zhong, J. F., S. N. Sedeh, Y. P. Lv, B. Arzani, and D. Toghraie. 2021. Investigation of Ferro-nanofluid flow within a porous ribbed microchannel heat sink using single-phase and two-phase approaches in the presence of constant magnetic field. Powder Technology 387:251–260. doi:10.1016/j.powtec.2021.04.033.
  • Zontul, H., H. Hamzah, N. Kurtulmuş, and B. Şahin. 2021. Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels. International Communications in Heat and Mass Transfer 126:105366. doi:10.1016/j.icheatmasstransfer.2021.105366.
  • Zontul, H., and B. Sahin. 2023. Experimental investigation of convective heat transfer performance and hydrodynamics of pulsating flow through the rectangular grooved channel. Experimental Thermal and Fluid Science 141:110796. doi:10.1016/j.expthermflusci.2022.110796.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.