17
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of hydrofluoric acid on Guizhou anthracite structure modification and response to enhanced hydrolysis and permeability of coal

, , , , , & show all
Pages 5306-5323 | Received 03 Jul 2023, Accepted 21 Mar 2024, Published online: 09 Apr 2024

References

  • An, W, and L. Wang. 2020. Mechanical properties and modification laws of coal under surfactant action. Journal of China Coal Society 12:4074–86.
  • Balucan, R. D, L. G. Turner, and K. M. Steel. 2018. X-ray μCT investigations of the effects of cleat demineralization by HCl acidizing on coal permeability. Journal of Natural Gas Science & Engineering 55:206–18. doi:10.1016/j.jngse.2018.05.007.
  • Chen, C, D. Zhang, X. Xian, and X. Xian. 1997. The microcrystal structure and coalification degree of coal. Coal Conversion 1:45–49.
  • He, J, M. Yuan, B. Li, and R. Zhang. 2023. Research on the optimization for acidification modification scheme considering Coal’s wettability based on the AHP–TOPSIS method. American Chemical Society Omega 8 (36):32667–76. doi:10.1021/acsomega.3c03428.
  • Lewis, R. T, and J. G. Seland. 2016. A multi-dimensional experiment for characterization of pore structure heterogeneity using NMR. Journal of Magnetic Resonance 263:19–32. doi:10.1016/j.jmr.2015.11.016.
  • Li, H, B. Lin, Z. Chen, Y. Hong, and C. Zheng. 2017. Evolution of coal petrophysical properties under microwave irradiation stimulation for different water saturation conditions. Energy & Fuels 31 (9):8852–64. doi:10.1021/acs.energyfuels.7b00553.
  • Lin, H, B. Cheng, S. Li, P. Xiao, and M. Yan. 2016. Experimental study on the influence of coal adsorption pore structure on gas emission characteristics. Journal of Mining & Safety Engineering 33 (3):557–63.
  • Liu, T, B. Lin, and Q. Zou. 2015. Change characteristics of coal pore structure after slit pre pumping in Yangliu coal mine. Natural Gas Geoscience 26 (10):1999–2008.
  • Luo, M. K, S. J. Cui, X. H. Zhou, S. Li, and C. J. Fan. 2020. Experimental study on permeability enhancement of coal seam with high mineral content by acid fracturing. Energy Sources Part A-Recovery Utilization and Environmental Effects 1–14. doi:10.1080/15567036.2020.1758854.
  • Ni, G, K. Dong, S. Li, and Q. Sun. 2019. Gas desorption characteristics effected by the pulsating hydraulic fracturing in coal. Fuel 236:190–200. doi:10.1016/j.fuel.2018.09.005.
  • Ohkubo, T, M. Ibaraki, Y. Tachi, and Y. Lwadate. 2016. Pore distribution of water-saturated compacted clay using NMR relaxometry and freezing temperature depression; effects of density and salt concentration. Applied Clay Science 123:148–55. doi:10.1016/j.clay.2016.01.014.
  • Shang, L, N. Guanhua, W. Hui, X. Meng, and X. Yuhang. 2020. Effects of acid solution of different components on the pore structure and mechanical properties of coal. Advanced Powder Technology 33 (4):1736–47. doi:10.1016/j.apt.2020.02.009.
  • Wang, H, X. Cheng, J. Tian, T. Li, W. Wang, J. Pan, Q. Niu, S. Feng, H. Hao, and Y. Zhang. 2020. Permeability enhancement of low rank coal through acidization using H2S solution: An experimental study in the Kuqa-Bay Coalfield, Xinjiang, China. Journal of Petroleum Science & Engineering 185:106476. doi:10.1016/j.petrol.2019.106476.
  • Wang, L, Z. Long, and G. Zhu. 2022. Isothermal adsorption/desorption characteristics, and mechanism of tectonically deformed medium-rank coals. Acta Sedimentologica Sinica 40 (1):60–72.
  • Weibo, H, Z. Gang, Z. Qingtao, P. Hongwei, and L. Dong. 2020. Experimental study on modification of physicochemical characteristics of acidified coal by surfactants and ionic liquids. Fuel 266:116966. doi:10.1016/j.fuel.2019.116966.
  • Xiang, J, F. Zeng, H. Liang, M. Li, X. Song, and Y. Zhao. 2016. Carbon structure characteristics and evolution mechanism of different rank coals. Journal of China Coal Society 41 (6):1498–506.
  • Xie, H, G. Ni, J. Xie, W. Cheng, X. Meng, and Y. Xu. 2020. The effect of SDS synergistic composite acidification on the chemical structure and wetting characteristics of coal. Powder Technology 368:253–67. doi:10.1016/j.powtec.2020.05.008.
  • Xin, L, M. Xu, M. Feng, K. Li, Z. Wang, J. Xie, L. Han, and W. Liu. 2021. Compositional evolution of lignite during spontaneous combustion under low-temperature oxidation. Combustion Theory and Modelling 25 (4):695–717. doi:10.1080/13647830.2021.1934549.
  • Xu, H, D. Tang, J. Zhao, and S. Li. 2015. A precise measurement method for shale porosity with low-field nuclear magnetic resonance: A case study of the Carboniferous–Permian Strata in the Linxing area, eastern Ordos Basin, China. Fuel 143:47–54. doi:10.1016/j.fuel.2014.11.034.
  • Yang, H. T, Y. B. Yu, W. M. Cheng, J. Rui, and Q. Xu. 2021. Influence of acetic acid dissolution time on evolution of coal phase and surface morphology. Fuel 286:119464. doi:10.1016/j.fuel.2020.119464.
  • Yan, F, J. Xu, B. Lin, S. Peng, Q. Zou, and X. Zhang. 2019. Changes in pore structure and permeability of anthracite coal before and after high-voltage electrical pulses treatment. Powder Technology 343:560–7. doi:10.1016/j.powtec.2018.11.083.
  • Yinglan, X, J. Zhang, Y. Liu, Y. Chen, J. Sun, H. Q. Jiang, W. Zhang, and D. Cao. 2022. Roadmap for coal control and carbon reduction in the steel industry under the “Dual Carbon” goal. Environmental Science 43 (10):4392–4400.
  • Yong, L, X. Binwei, and L. Xiaotian. 2015. A novel method of orienting hydraulic fractures in coal mines and its mechanism of intensified conduction. Journal of Natural Gas Science and Engineering 27 (1):190–99. doi:10.1016/j.jngse.2015.08.054.
  • Zha, W, B. Lin, T. Liu, T. Liu, and W. Yang. 2023. Effect of acidification on microscopic properties and pore structure of coal. Fuel 343:127834. doi:10.1016/j.fuel.2023.127834.
  • Zhang, C, E. Wang, J. Xu, and S. Peng. 2020. Experimental investigation on mechanics and seepage characteristics of tectonic and intact coal containing gas. Applied Sciences 10 (20):7290. doi:10.3390/app10207290.
  • Zhao, Y, B. Lin, T. Liu, Y. Zheng, Y. Sun, G. Zhang, and Q. Li. 2021. Multifractal analysis of coal pore structure based on NMR experiment: A new method for predicting T2 cutoff value. Fuel 283:1–12. doi:10.1016/j.fuel.2020.119338.
  • Zheng, L, Z. Liu, I. D. L, H. Wang, and Q. Zhang. 2021. Micromechanism analysis of surfactant wetting of coal based on 13C NMR experiments. American Chemical Society Omega 6 (2):1378–90. doi:10.1021/acsomega.0c05005.
  • Zhou, S. W, H. Xue, W. Guo, and X. Li. 2016. A new nuclear magnetic resonance permeability model of shale of Longmaxi formation in southern Sichuan Basin. Journal of China University of Petroleum 40 (1):56–61.
  • Zou, Q. L, and B. Q. Lin. 2018. Fluid-solid coupling characteristics of gas-bearing coal subjected to hydraulic slotting: An experimental investigation. Energy & Fuel 32 (2):1047–60. doi:10.1021/acs.energyfuels.7b02358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.