40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of retention time and catalyst concentrations on catalytic pyrolysis yields of polyethylene and polystyrene

ORCID Icon &
Pages 5072-5093 | Received 29 Nov 2023, Accepted 18 Mar 2024, Published online: 31 Mar 2024

References

  • Akubo, K., M. A. Nahil, and P. T. Williams. 2019. Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts. Journal of Energy Institute 92 (1):195–202. doi:10.1016/j.joei.2017.10.009.
  • Aljerf, L. 2018. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study. Journal of Environmental Management 225:120–32. doi:10.1016/j.jenvman.2018.07.048.
  • Amir, S., and H. Seyed. 2024. Catalytic pyrolysis of plastic waste to gasoline, jet fuel and diesel with nano MOF derived-loaded Y zeolite: Evaluation of temperature, zeolite crystallization and catalyst loading effects. Energy Conversion and Management 299:117825. doi:10.1016/j.enconman.2023.117825.
  • Brown, L. J., F. Collard, and J. Görgens. 2019. Fast pyrolysis of fibre waste contaminated with plastic for use as fuel products. Journal of Analytical and Applied Pyrolysis 138:261–69. doi:10.1016/j.jaap.2019.01.007.
  • Budsaereechai, S., A. J. Hunt, and Y. Ngernyen. 2019. Catalytic pyrolysis of plastic waste for the production of liquid fuels for engines. RSC Advances 9:5844–57. doi:10.1039/c8ra10058f.
  • Jackulin, F., P. S. Kumar, L. Jayaraman, and G. Rangasamy. 2023. Assessment of product distribution of plastic waste from catalytic pyrolysis process. Fuel 332:126168. doi:10.1016/j.fuel.2022.126168.
  • Kassargy, C., S. Awad, G. Burnens, K. Kahine, and M. Tazerout. 2017. Experimental study of catalytic pyrolysis of polyethylene and polypropylene over USY zeolite and separation to gasoline and diesel-like fuels. Journal of Analytical and Applied Pyrolysis 127:31–37. doi:10.1016/j.jaap.2017.09.005.
  • Kassargy, C., S. Awad, G. Burnens, K. Kahine, and M. Tazerout. 2018. Gasoline and diesel-like fuel production by continuous catalytic pyrolysis of waste polyethylene and polypropylene mixtures over USY zeolite. Fuel 224:764–73. doi:10.1016/j.fuel.2018.03.113.
  • Khazaal, R. M., and D. A. Abdulaaima. 2023. Valuable oil recovery from plastic wastes via pressurized thermal and catalytic pyrolysis. Energy Conversion and Management: X 20:100430. doi:10.1016/j.ecmx.2023.100430.
  • Kim, H., S. Kim, H. Kim, and H. Yang. 2006. Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochimica Acta 451 (1–2):181–88. doi:10.1016/j.tca.2006.09.013.
  • Ko, G., F. Collard, and J. F. Görgens. 2020. Pyrolysis of waste polypropylene plastics for energy recovery: Influence of heating rate and vacuum conditions on composition of fuel product. Fuel Processing Technology 209:36–38. doi:10.1016/j.fuproc.2020.106522.
  • Kofi, S., E. Kofi, and S. Dapaah. 2019. Plastic waste to fuel via pyrolysis: A key way to solving the severe plastic waste problem in Ghana. Thermal Science and Engineering Progress 11:417–24. doi:10.1016/j.tsep.2019.05.002.
  • Kremer, I., T. Tomi, J. P. Vukovi, D. R. Schneider, S. Papuga, J. P. Vuković, and D. R. Schneider. 2021. Catalytic pyrolysis of mechanically non-recyclable waste plastics mixture: Kinetics and pyrolysis in laboratory-scale reactor. Journal of Environmental Management 296:113145. doi:10.1016/j.jenvman.2021.113145.
  • Lee, K. 2012. Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil. Journal of Analytical and Applied Pyrolysis 94:209–14. doi:10.1016/j.jaap.2011.12.015.
  • Li, P., H. Pan, K. Wan, S. Zhou, Z. Zhang, D. Hong, and Y. Zhang. 2022. Sustainable energy & fuels jet fuel-range hydrocarbon production from catalytic pyrolysis of low-density polyethylene by metal-loaded activated carbon. Sustainable Energy & Fuels 6 (9):2289–305. doi:10.1039/d2se00129b.
  • Liu, R., M. Chai, M. Rahman, M. Sarker, C. Li, C. Li, and J. Cai. 2020. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure. Fuel Processing Technology 199:106301. doi:10.1016/j.fuproc.2019.106301.
  • López, A., I. Marco, B. M. De Caballero, M. F. Laresgoiti, A. Adrados, and A. Torres. 2011. Pyrolysis of municipal plastic wastes II: Influence of raw material composition under catalytic conditions. Waste Management 31 (9–10):1973–83. doi:10.1016/j.wasman.2011.05.021.
  • Lopez-Urionabarrenechea, A., I. De Marco, B. M. Caballero, M. F. Laresgoiti, and A. Adrados. 2012. Catalytic stepwise pyrolysis of packaging plastic waste. Journal of Analytical and Applied Pyrolysis 96:54–62. doi:10.1016/j.jaap.2012.03.004.
  • Lovás, P., P. Hudec, B. Jambor, E. Hájeková, and M. Horn. 2017. Catalytic cracking of heavy fractions from the pyrolysis of waste HDPE and PP. Fuel 203:244–52. doi:10.1016/j.fuel.2017.04.128.
  • Luing, S., S. Armenise, B. Bevan, A. Bogush, S. Towers, C. Hau, K. Y. Wong, T. H. Lee, E. Rebrov, M. Muñoz, et al. 2023. Plastic pyrolysis over HZSM-5 zeolite and fluid catalytic cracking catalyst under ultra-fast heating. Journal of Analytical and Applied Pyrolysis 169:169. doi:10.1016/j.jaap.2022.105793.
  • Melese, A. T., D. T. Ayele, L. Aljerf, D. F. Al-Fekaiki, and M. L. Akele. 2023. Investigating the phytoavailability of metals in roots of Croton macrostachyus and Phytolacca dodecandra: Induced rhizosphere processes. BioMetals 36 (6):1347–59. doi:10.1007/s10534-023-00522-9.
  • Miandad, R., M. A. Barakat, A. S. Aburiazaiza, M. Rehan, and A. S. Nizami. 2016. Catalytic pyrolysis of plastic waste: A review. Process Safety and Environmental Protection 102:822–38. doi:10.1016/j.psep.2016.06.022.
  • Miandad, R., M. Rehan, M. A. Barakat, A. S. Aburiazaiza, H. Khan, I. M. I. Ismail, J. Dhavamani, J. Gardy, A. Hassanpour, and A.-S. Nizami. 2019. Catalytic pyrolysis of plastic waste: Moving toward Pyrolysis based biorefineries. Frontiers in Energy Research 7:1–17. doi:10.3389/fenrg.2019.00027.
  • Miskolczi, N., L. Bartha, and G. Dea. 2006. Thermal degradation of polyethylene and polystyrene from the packaging industry over different catalysts into fuel-like feed stocks. Polymer Degradation and Stability 91 (3):517–26. doi:10.1016/j.polymdegradstab.2005.01.056.
  • Mullen, C. A., C. Dorado, and A. A. Boateng. 2018. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation. Journal of Analytical and Applied Pyrolysis 129:195–203. doi:10.1016/j.jaap.2017.11.012.
  • Nizami, A. S., O. K. M. Ouda, M. Rehan, A. M. O. El-Maghraby, J. Gardy, A. Hassanpour, S. Kumar, and I. M. I. Ismail. 2016. The potential of Saudi Arabian natural zeolites in energy recovery technologies. Energy 108:162–71. doi:10.1016/j.energy.2015.07.030.
  • Owusu, P. A., N. Banadda, A. Zziwa, J. Seay, and N. Kiggundu. 2018. Reverse engineering of plastic waste into useful fuel products. Journal of Analytical and Applied Pyrolysis 130:285–93. doi:10.1016/j.jaap.2017.12.020.
  • Peng, Y., Y. Wang, L. Ke, L. Dai, Q. Wu, K. Cobb, Y. Zeng, R. Zou, Y. Liu, R. Ruan, et al. 2022. A review on catalytic pyrolysis of plastic wastes to high-value products. Energy Conversion and Management 254:115243. doi:10.1016/j.enconman.2022.115243.
  • Putra, P. H. M., S. Rozali, M. F. A. Patah, and A. Idris. 2022. A review of microwave pyrolysis as a sustainable plastic waste management technique. Journal of Environmental Management 303:114240. doi:10.1016/j.jenvman.2021.114240.
  • Saeaung, K., N. Phusunti, W. Phetwarotai, S. Assabumrungrat, and B. Cheirsilp. 2021. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals. Waste Management 127:101–11. doi:10.1016/j.wasman.2021.04.024.
  • Santella, C., L. Cafiero, D. Angelis, F. De La, R. Tuffi, and S. Vecchio. 2016. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE). Waste Manag 54:143–52. doi:10.1016/j.wasman.2016.05.005.
  • Sekar, M., V. K. Ponnusamy, A. Pugazhendhi, S. Nižetić, and T. R. Praveenkumar. 2022. Production and utilization of pyrolysis oil from solidplastic wastes: A review on pyrolysis process and influence of reactors design. Journal of Environmental Management 302:302. doi:10.1016/j.jenvman.2021.114046.
  • Thahir, R., M. Irwan, A. Alwathan, and R. Ramli. 2021. Effect of temperature on the pyrolysis of plastic waste using zeolite ZSM-5 using a refinery distillation bubble cap plate column. Results in Engineering 11:100231. doi:10.1016/j.rineng.2021.100231.
  • Tian, X., Z. Zeng, Z. Liu, L. Dai, J. Xu, X. Yang, L. Yue, Y. Liu, R. Ruan, and Y. Wang. 2022. Conversion of low-density polyethylene into monocyclic aromatic hydrocarbons by catalytic pyrolysis: Comparison of HZSM-5, H β, HY and MCM-41. Journal of Cleaner Production 358:131989. doi:10.1016/j.jclepro.2022.131989.
  • Torres, A. P., E. T. Jimenez, B. K. G. Bombek, J. V. Valh, J. Volmajer-Valh, and L. Lešnik. 2023. Catalytic pyrolysis of plastic wastes for liquid oils ’ production using ZAP USY zeolite as a catalyst. International Journal of Environmental Science and Technology 20 (1):17–30. doi:10.1007/s13762-022-04023-z.
  • Venturelli, M., E. Falletta, C. Pirola, F. Ferrari, M. Milani, and L. Montorsi. 2022. Experimental evaluation of the pyrolysis of plastic residues and waste tires. Applied Energy 323:119583. doi:10.1016/j.apenergy.2022.119583.
  • Zhang, Y., G. Ji, C. Chen, Y. Wang, W. Wang, and A. Li. 2020. Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln. Fuel Processing Technology 206:106455. doi:10.1016/j.fuproc.2020.106455.
  • Zhang, J., M. Ma, Z. Chen, X. Zhang, H. Yang, X. Wang, H. Feng, J. Yu, and S. Gao. 2023. Production of monocyclic aromatics and light olefins through ex-situ catalytic pyrolysis of low-density polyethylene over Ga/P/ZSM-5 catalyst. Journal of the Energy Institute 108:101235. doi:10.1016/j.joei.2023.101235.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.