30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Biomass valorization of Mangifera Indica into hierarchical carbon materials with self-doping oxygen assisted carbonization for supercapacitor applications

ORCID Icon, &
Pages 5168-5179 | Received 12 Oct 2023, Accepted 24 Mar 2024, Published online: 03 Apr 2024

References

  • Adeonipekun, P. A., T. A. Adeniyi, O. Q. Chidinma, and R. O. Omolayo. 2023. Proximate, phytochemical, and antimicrobial evaluation of flowers of Mangifera indica L., stamens of Terminalia catappa L., and anther of Delonix regia (bojer ex hook.) Raf. South African Journal of Botany 155:223–29. doi:10.1016/j.sajb.2023.02.011.
  • Banerjee, S., B. De, P. Sinha, J. Cherusseri, and K. K. Kar. 2020. Applications of supercapacitors. Springer Series in Materials Science 300. doi:10.1007/978-3-030-43009-2_13.
  • Cao, X., Z. Li, H. Chen, C. Zhang, Y. Zhang, C. Gu, X. Xu, and Q. Li. 2021. Synthesis of biomass porous carbon materials from bean sprouts for hydrogen evolution reaction electrocatalysis and supercapacitor electrode. International Journal of Hydrogen Energy 46 (36):18887–97. doi:10.1016/j.ijhydene.2021.03.038.
  • Cheng, Y., L. Wu, C. Fang, T. Li, J. Chen, M. Yang, and Q. Zhang. 2020. Synthesis of porous carbon materials derived from laminaria japonica via simple carbonization and activation for supercapacitors. Journal of Materials Research and Technology 9 (3):3261–71. doi:10.1016/j.jmrt.2020.01.022.
  • De, B., S. Banerjee, T. Pal, K. D. Verma, A. Tyagi, P. K. Manna, and K. K. Kar. 2020. Transition metal oxide-/carbon-/electronically conducting polymer-based ternary composites as electrode materials for supercapacitors. Springer Series in Materials Science 302. doi:10.1007/978-3-030-52359-6_15.
  • Deng, H., G. Li, H. Yang, J. Tang, and J. Tang. 2010. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Journal of Chemical Engineering 163 (3):373–81. doi:10.1016/j.cej.2010.08.019.
  • Dong, Y., W. Wang, H. Quan, Z. Huang, D. Chen, and L. Guo. 2016. Nitrogen-doped foam-like carbon plate consisting of carbon tubes as high-performance electrode materials for supercapacitors. ChemElectrochem 3 (5):814–21. doi:10.1002/celc.201500519.
  • Elanthamilan, E., S. J. Jennifer, S. F. Wang, and J. P. Merlin. 2022. Effective conversion of cassia fistula dry fruits biomass into porous activated carbon for supercapacitors. Materials Chemistry and Physics 286 (February):126188. doi:10.1016/j.matchemphys.2022.126188.
  • Farma, R., I. Apriyani, A. Awitdrus, E. Taer, and A. Apriwandi. 2022. Hemicellulosa-derived arenga pinnata bunches as free-standing carbon nanofiber membranes for electrode material supercapacitors. Scientific Reports 12 (1):1–11. doi:10.1038/s41598-022-06619-4.
  • Farma, R., I. Apriyani, M. Taer, E. Deraman, R. Nanda, A. Sulistyo, and A. S. Rini. 2023. Enhanced electrochemical performance of oxygen, nitrogen, and sulfur trial-doped Nypa fruticans -based carbon nanofiber for high performance supercapacitors. Journal of Energy Storage 67 (May):107611. doi:10.1016/j.est.2023.107611.
  • Feng, W., P. He, S. Ding, G. Zhang, M. He, F. Dong, J. Wen, L. Du, and M. Liu. 2016. Oxygen-doped activated carbons derived from three kinds of biomass: Preparation, characterization and performance as electrode materials for supercapacitors. RSC Advances 6 (7):5949–56. doi:10.1039/c5ra24613j.
  • Gong, Y., D. Li, C. Luo, Q. Fu, and C. Pan. 2017. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chemistry 19 (17):4132–40. doi:10.1039/c7gc01681f.
  • Gupta, G. K., P. Sagar, S. K. Pandey, M. Srivastava, A. K. Singh, J. Singh, A. Srivastava, S. K. Srivastava, and A. Srivastava. 2021. In situ fabrication of activated carbon from a bio-waste desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Research Letters 16 (1):1–12. doi: 10.1186/s11671-021-03545-8.
  • He, J., D. Zhang, M. Han, X. Liu, Y. Wang, Y. Li, X. Zhang, K. Wang, H. Feng, and Y. Wang. 2019. One-step large-scale fabrication of nitrogen doped microporous carbon by self-activation of biomass for supercapacitors application. Journal of Energy Storage 21 (August 2018):94–104. doi:10.1016/j.est.2018.11.015.
  • Hsiao, C. H., S. Gupta, C. Y. Lee, and N. H. Tai. 2023. Effects of physical and chemical activations on the performance of biochar applied in supercapacitors. Applied Surface Science 610 (September 2022):155560. doi:10.1016/j.apsusc.2022.155560.
  • Ishak, M. M., M. Deraman, I. A. Talib, N. H. Basri, R. Awitdrus Farma, E. Taer, R. Omar, N. S. M. Nor, and B. N. M. Dolah 2015. Effect of carbonization temperature on the physical and electrochemical properties of supercapacitor electrode from fibers of oil palm empty fruit bunches. AIP Conference Proceedings 1656. 10.1063/1.4917094
  • Jiang, L., L. Sheng, and Z. Fan. 2017. Biomass-derived carbon materials with structural diversities and their applications in energy stronge. Science China Materials 5 (December). doi: 10.1007/s40843-017-9169-4.
  • Kanjana, K., P. Harding, T. Kwamman, W. Kingkam, and T. Chutimasakul. 2021. Biomass-derived activated carbons with extremely narrow pore size distribution via eco-friendly synthesis for supercapacitor application. Biomass and Bioenergy 153 (May):106206. doi:10.1016/j.biombioe.2021.106206.
  • Le Van, K., and T. T. Luong Thi. 2014. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Progress in Natural Science: Materials International 24 (3):191–98. doi:10.1016/j.pnsc.2014.05.012.
  • Lin, S., F. Wang, and Z. Shao. 2021. Biomass applied in supercapacitor energy storage devices. Journal of Materials Science 56 (3):1943–79. doi:10.1007/s10853-020-05356-1.
  • Li, X., Z. Su, P. Liang, and J. Zhang. 2021. Construction of fungus waste-derived porous carbon as electrode materials for electrochemical supercapacitor. Biomass Conversion and Biorefinery 13 (7):6237–6248. doi:10.1007/s13399-021-01612-9.
  • Liu, L., X. An, Z. Tian, G. Yang, S. Nie, Z. Shang, H. Cao, Z. Cheng, S. Wang, H. Liu, et al. 2022. Biomass derived carbonaceous materials with tailored superstructures designed for advanced supercapacitor electrodes. Industrial Crops and Products 187 (PB):115457. doi:10.1016/j.indcrop.2022.115457.
  • Liu, H., X. Huang, M. Zhou, J. Gu, M. Xu, L. Jiang, M. Zheng, S. Li, and Z. Miao. 2023. Efficient conversion of biomass waste to N/O co-doped hierarchical porous carbon for high performance supercapacitors. Journal of Analytical and Applied Pyrolysis 169 (December 2022):105844. doi:10.1016/j.jaap.2022.105844.
  • Li, C., X. Zhang, K. Wang, F. Su, C. M. Chen, F. Liu, Z. S. Wu, and Y. Ma. 2021. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. Journal of Energy Chemistry 54:352–67. doi:10.1016/j.jechem.2020.05.058.
  • Li, L., X. Zheng, F. Zhang, H. Yu, H. Wang, Z. Jia, Y. Sun, E. Jiang, and X. Xu. 2023. Formamide hydrothermal pretreatment assisted camellia shell for upgrading to N-containing chemical and supercapacitor electrode preparation using the residue. Energy 265 (July 2022):126247. doi:10.1016/j.energy.2022.126247.
  • Momodu, D., M. Madito, F. Barzegar, A. Bello, A. Khaleed, O. Olaniyan, J. Dangbegnon, and N. Manyala. 2017. Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. Journal of Solid State Electrochemistry 21 (3):859–72. doi:10.1007/s10008-016-3432-z.
  • Rajasekaran, S. J., and V. Raghavan. 2020. Facile synthesis of activated carbon derived from eucalyptus globulus seed as efficient electrode material for supercapacitors. Diamond and Related Materials 109 (July):108038. doi:10.1016/j.diamond.2020.108038.
  • Rawat, S., R. K. Mishra, and T. Bhaskar. 2022. Biomass derived functional carbon materials for supercapacitor applications. Chemosphere 286 (P3):131961. doi:10.1016/j.chemosphere.2021.131961.
  • Selvaraj, A. R., A. Muthusamy, H. J. Inho-Cho, K. Prabakar, K. Senthil, and K. Prabakar. 2021. Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors. Carbon 174:463–74. doi:10.1016/j.carbon.2020.12.052.
  • Shen, Y. 2020. A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass and Bioenergy 134 (August 2019):105479. doi:10.1016/j.biombioe.2020.105479.
  • Sun, Y., J. Xue, S. Dong, Y. Zhang, Y. An, B. Ding, T. Zhang, H. Dou, and X. Zhang. 2020. Biomass-derived porous carbon electrodes for high-performance supercapacitors. Journal of Materials Science 55 (12):5166–76. doi:10.1007/s10853-019-04343-5.
  • Taer, E., A. Apriwandi, R. Taslim, A. Agutino, and D. A. Yusra. 2020. Conversion Syzygium oleana leaves biomass waste to porous activated carbon nanosheet for boosting supercapacitor performances. Journal of Materials Research and Technology 9 (6):13332–40. doi:10.1016/j.jmrt.2020.09.049.
  • Thirumal, V., R. Yuvakkumar, G. Ravi, G. Dineshkumar, M. Ganesan, S. H. Alotaibi, and D. Velauthapillai. 2022. Characterization of activated biomass carbon from tea leaf for supercapacitor applications. Chemosphere 291 (P2):132931. doi:10.1016/j.chemosphere.2021.132931.
  • Vinayagam, M., R. Suresh Babu, A. Sivasamy, and A. L. F. de Barros. 2021. Biomass-derived porous activated carbon nanofibers from sapindus trifoliatus nut shells for high-performance symmetric supercapacitor applications. Carbon Letters 31 (6):1133–43. doi:10.1007/s42823-021-00235-4.
  • Wang, Y., Q. Qu, S. Gao, G. Tang, K. Liu, S. He, and C. Huang. 2019. Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–26. doi:10.1016/j.carbon.2019.09.018.
  • Wang, B., X. Wu, Y. Yu, N. Wang, and Z. Zhou. 2022. Simultaneously tuning the hierarchical porous structure and graphitization degree of biomass derived carbon for supercapacitors. Electrochimica Acta 432 (August):141219. doi:10.1016/j.electacta.2022.141219.
  • Yang, X., Y. Zheng, C. He, Y. Qiu, W. Hou, B. Lu, Y. Chen, B. Huang, J. Lv, and G. Lin. 2023. Journal of analytical and applied pyrolysis preparation of biomass-based N, P, and S co-doped porous carbon with high mesoporosity based on the synergistic effect of NaOH/thiourea and melamine phosphate and its application in high performance supercap. Journal of Analytical and Applied Pyrolysis 169 (December 2022):105822. doi:10.1016/j.jaap.2022.105822.
  • Yetri, Y., A. T. Hoang, D. Mursida, D. Muldarisnur, E. Chau, M. Q. Taer, and M. Q. Chau. 2020. Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–15. doi:10.1080/15567036.2020.1811433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.