30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Online battery aging calculation in plug-in hybrid electric vehicle considering driving condition

& ORCID Icon
Pages 5324-5343 | Received 09 Oct 2023, Accepted 22 Mar 2024, Published online: 11 Apr 2024

References

  • Aggarwal, S., and A. K. Singh. 2021. Electric vehicles the future of transportation sector: A review. Energy Sources, Part a Recover, Utilization Environmental Effects 1–21. doi:10.1080/15567036.2021.1976322.
  • Anselma, P. G., P. Kollmeyer, J. Lempert, Z. Zhao, G. Belingardi, and A. Emadi. 2021. Battery state-of-health sensitive energy management of hybrid electric vehicles: Lifetime prediction and ageing experimental validation. Applied Energy 285:116440. doi:10.1016/j.apenergy.2021.116440.
  • Baccouche, I., S. Jemmali, B. Manai, A. Nikolian, N. Omar, and N. Essoukri Ben Amara. 2021. Li-ion battery modeling and characterization: An experimental overview on NMC battery. International Journal of Energy Research 46 (4):3843–59. doi:10.1002/er.7445.
  • Barlow, T., S. Latham, I. Mccrae, and P. Boulter. 2009. A reference book of driving cycles for use in the measurement of road vehicle emissions. [ online]. http://www.trl.co.uk/online_store/reports_publications/trl_reports/cat_traffic_and_the_environment/report_a_reference_book_of_driving_cycles_for_use_in_the_measurement_of_road_vehicle_emissions.htm%5Cnhttps://www.gov.uk/government/uploads/system/uploads/a
  • Chen, Z., S. J. Li, X. Cai, N. Zhou, and J. Cui. 2022. Online state of health monitoring of lithium-ion battery based on model error spectrum for electric vehicle applications. Journal of Energy Storage 45 (October 2020):103507. doi:10.1016/j.est.2021.103507.
  • Chen, Z., Y. Liu, Y. Zhang, Z. Lei, Z. Chen, and G. Li. 2022, Mar. A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles. Energy 243:122727. doi:10.1016/j.energy.2021.122727.
  • Du, A., Y. Han, and Z. Zhu. 2022. Review on multi-objective optimization of energy management strategy for hybrid electric vehicle integrated with traffic information. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 44 (3):7914–33. doi:10.1080/15567036.2022.2117437.
  • Frid’en, H., and H. Sahlin. 2012. Energy management strategies for plug-in hybrid electric vehicles. MS thesis., Chalmers University of Technology.
  • Gundogdu, B., and D. T. Gladwin. 2018. A fast battery cycle counting method for grid-tied battery energy storage system subjected to microcycles. iEECON 2018 - 6th International Electrical Engineering Congress. doi:10.1109/IEECON.2018.8712263.
  • Hong, J., Z. Wang, W. Chen, L. Wang, P. Lin, and C. Qu. 2021. Online accurate state of health estimation for battery systems on real-world electric vehicles with variable driving conditions considered. Journal of Cleaner Production 294:125814. doi:10.1016/j.jclepro.2021.125814.
  • Huria, T., M. Ceraolo, J. Gazzarri, and R. Jackey. 2012. High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells. 2012 2012 IEEE International Electric Vehicle Conference. doi: 10.1109/IEVC.2012.6183271.
  • Jin, X., A. P. Vora, V. Hoshing, T. Saha, G. M. Shaver, R. Edwin García, O. Wasynczuk, and S. Varigonda. 2017. Physically-based reduced-order capacity loss model: SEI layer growth and active material loss for graphite anode. 2017 American Control Conference (ACC), IEEE, pp. 80–85. doi: 10.23919/ACC.2017.7962934.
  • Kumar, A., and P. R. Thakura. 2020, Nov. ADVISOR-Based performance analysis of a hybrid electric vehicle and comparison with a conventional vehicle. IETE Journal of Research 69(2):753–61. doi:10.1080/03772063.2020.1838344.
  • Lawder, M. T., P. W. C. Northrop, and V. R. Subramanian. 2014. Model-based SEI layer growth and capacity fade analysis for EV and PHEV batteries and drive cycles. Journal of the Electrochemical Society 161 (14):A2099–108. doi:10.1149/2.1161412jes.
  • Li, X., L. Ju, G. Geng, and Q. Jiang. 2023. Data-driven state-of-health estimation for lithium-ion battery based on aging features. Energy 274 (March):127378. doi:10.1016/j.energy.2023.127378.
  • Liu, S., Y. Nie, A. Tang, J. Li, Q. Yu, and C. Wang. 2023. Online health prognosis for lithium-ion batteries under dynamic discharge conditions over wide temperature range. eTransportation 18 (2):100296. doi:10.1016/j.etran.2023.100296.
  • Martorell, S., S. Carlos, A. Sanchez, and V. Serradell. 2000. Constrained optimization of test intervals using a steady-state genetic algorithm. Reliability Engineering and System Safety 67 (3):215–32. doi:10.1016/S0951-8320(99)00074-5.
  • Montazeri-Gh, M., A. Fotouhi, and A. Naderpour. 2011. Driving patterns clustering based on driving feature analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225 (6):1301–17. doi:10.1177/2041298310392599.
  • Montazeri-Gh, M., and Z. Pourbafarani. Nov 2017. Near-optimal SOC trajectory for traffic-based adaptive PHEV control strategy. IEEE Transactions on Vehicular Technology 66 (11):9753–60. doi:10.1109/TVT.2017.2757604.
  • Moore, T. C., and A. B. Lovins. 1995, Aug. Vehicle design strategies to meet and exceed PNGV goals. doi:10.4271/951906.
  • Notten, P. H. L., J. H. G. O. Het Veld, and J. R. G. Van Beek. 2005. Boostcharging Li-ion batteries: A challenging new charging concept. Journal of Power Sources 145 (1):89–94. doi:10.1016/j.jpowsour.2004.12.038.
  • Palmer, K., J. E. Tate, Z. Wadud, and J. Nellthorp. 2018. Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Applied Energy 209 (Jan):108–19. doi:10.1016/j.apenergy.2017.10.089.
  • Panchal, S., J. Mcgrory, J. Kong, R. Fraser, M. Fowler, I. Dincer, and M. Agelin-Chaab. 2017. Cycling degradation testing and analysis of a LiFePO4 battery at actual conditions. International Journal of Energy Research 41 (15):2565–75. doi:10.1002/er.3837.
  • Parthasarathy, C., H. Laaksonen, E. Redondo-Iglesias, and S. Pelissier. 2023. Aging aware adaptive control of Li-ion battery energy storage system for flexibility services provision. Journal of Energy Storage 57 (Jan):106268. doi:10.1016/j.est.2022.106268.
  • Plett, G. L. 2015. Battery management systems, Volume I: Battery modeling. Artech House.
  • Rajanna, B. V., and M. K. Kumar. 2020. Comparison of one and two time constant models for lithium ion battery. International Journal of Electrical and Computer Engineering 10 (1):670–80. doi:10.11591/ijece.v10i1.pp670-680.
  • Rao, Z., S. Wang, and G. Zhang. 2011. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO 4 power battery. Energy Conversion and Management 52 (12):3408–14. doi:10.1016/j.enconman.2011.07.009.
  • Sawaragi, Y., H. Nakayama, and T. Tanino. 1985. Theory of multiobjective optimization. Elsevier.
  • Schmalstieg, J., S. Käbitz, M. Ecker, and D. U. Sauer. 2014. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. Journal of Power Sources 257:325–34. doi:10.1016/j.jpowsour.2014.02.012.
  • Serrao, L., S. Onori, and G. Rizzoni. 2011. A comparative analysis of energy management strategies for hybrid electric vehicles. Journal of Dynamic Systems, Measurement, and Control Trans ASME 133 (3):1–9. doi:10.1115/1.4003267.
  • Suri, G., and S. Onori. 2016. A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy 96 (Feb):644–53. doi:10.1016/j.energy.2015.11.075.
  • Tie, S. F., and C. W. Tan. 2013. A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews 20:82–102. doi:10.1016/j.rser.2012.11.077.
  • Timilsina, L., P. R. Badr, P. H. Hoang, G. Ozkan, B. Papari, and C. S. Edrington. 2023. Battery degradation in electric and hybrid electric vehicles: A survey study,” IEEE Access. doi:10.1109/ACCESS.2023.3271287.
  • Tran, M.-K., A. Mevawala, S. Panchal, K. Raahemifar, M. Fowler, and R. Fraser. 2020. Effect of integrating the hysteresis component to the equivalent circuit model of Lithium-ion battery for dynamic and non-dynamic applications. Journal of Energy Storage 32 (Dec):101785. doi:10.1016/j.est.2020.101785.
  • Visakh, A., and M. P. Selvan. 2022. Feasibility assessment of utilizing electric vehicles for energy arbitrage in smart grids considering battery degradation cost. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 44 (2):4664–78. doi:10.1080/15567036.2022.2078443.
  • Vora, A. P., X. Jin, V. Hoshing, X. Guo, G. Shaver, W. Tyner, E. Holloway, S. Varigonda, and J. Kupe. 2015. Simulation framework for the optimization of HEV design parameters: Incorporating battery degradation in a lifecycle economic analysis. IFAC-Papersonline 28 (15):195–202. doi:10.1016/j.ifacol.2015.10.028.
  • Widmer, F., A. Ritter, P. Duhr, and C. H. Onder. 2022. Battery lifetime extension through optimal design and control of traction and heating systems in hybrid drivetrains. eTransportation 14 (Nov):100196. doi:10.1016/j.etran.2022.100196.
  • Won You, G., S. Park, and D. Oh. 2016. Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach. Applied Energy 176:92–103. doi:10.1016/j.apenergy.2016.05.051.
  • Xie, S., X. Hu, Q. Zhang, X. Lin, B. Mu, and H. Ji. 2020. Aging-aware co-optimization of battery size, depth of discharge, and energy management for plug-in hybrid electric vehicles. Journal of Power Sources 450 (Feb):227638. doi:10.1016/j.jpowsour.2019.227638.
  • Xiong, R., L. Li, and J. Tian. 2018. Towards a smarter battery management system: A critical review on battery state of health monitoring methods. Journal of Power Sources 405 (5):18–29. doi:10.1016/j.jpowsour.2018.10.019.
  • Yi, F., D. Lu, X. Wang, C. Pan, Y. Tao, J. Zhou, and C. Zhao. 2022. Energy management strategy for hybrid energy storage electric vehicles based on pontryagin’s minimum principle considering battery degradation. Sustainability 14 (3):1214. doi:10.3390/su14031214.
  • Yu, Q., Y. Nie, S. Liu, J. Li, and A. Tang. 2023. State of health estimation method for lithium-ion batteries based on multiple dynamic operating conditions. Journal of Power Sources 582 (69):233541. doi:10.1016/j.jpowsour.2023.233541.
  • Zhao, J., H. Ling, J. Liu, J. Wang, A. F. Burke, and Y. Lian. 2023 Jan. Machine learning for predicting battery capacity for electric vehicles. eTransportation 15:100214. doi:10.1016/j.etran.2022.100214.
  • Zhou, L., D. Yang, X. Zeng, X. Zhang, and D. Song. 2023. Multi-objective real-time energy management for series – parallel hybrid electric vehicles considering battery life. Energy Conversion and Management 290 (5988):117234. doi:10.1016/j.enconman.2023.117234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.