25
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The case study of the surface roughness influence at additively manufactured ejector and orifice plate and its impact on fluid flow

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5382-5398 | Received 01 Feb 2024, Accepted 29 Mar 2024, Published online: 11 Apr 2024

References

  • 3D tisk versus CNC obrábění v kovovýrobě. n.d. Strojirenstvi.cz. https://www.strojirenstvi.cz/3d-tisk-versus-cnc-obrabeni-v-kovovyrobe Accessed February 22, 2023.
  • Abdar, M., F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu, M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R. Acharya, et al. 2021. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion 76:243–97. doi:10.1016/j.inffus.2021.05.008.
  • Adams, T., C. Grant, and H. Watson. 2012. A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. International Journal of Mechanical Engineering and Mechatronics 1:66–71. doi:10.11159/ijmem.2012.008.
  • Alder, G. M. 1979. The numerical solution of choked and supercritical ideal gas flow through orifices and convergent conical nozzles. Journal of Mechanical Engineering Science 21 (3):197–203. doi:10.1243/JMES_JOUR_1979_021_032_02.
  • ANSYS FLUENT 12.0 User’s Guide. n.d. 7.3.14 Wall Boundary Conditions. Accessed February 22, 2023. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node250.htm#sec-wall-roughness
  • Bataineh, K. M. 2016. Multi-effect desalination plant combined with thermal compressor driven by steam generated by solar energy. Desalination 385:39–52. doi:10.1016/J.DESAL.2016.02.011.
  • Beran, T., J. Hübel, R. Maertens, S. Reuter, J. Gärtner, J. Köhler, and T. Koch. 2021. Study of a polymer ejector design and manufacturing approach for a mobile air conditioning. International Journal of Refrigeration 126:35–44. doi:10.1016/J.IJREFRIG.2021.01.023.
  • Besagni, G., R. Mereu, and F. Inzoli. 2016. Ejector refrigeration: A comprehensive review. Renewable and Sustainable Energy Reviews 53:373–407. doi:10.1016/J.RSER.2015.08.059.
  • Bilgen, S. 2014. Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews 38:890–902. doi:10.1016/J.RSER.2014.07.004.
  • Chen, W., C. Huang, D. Chong, and J. Yan. 2019. Numerical assessment of ejector performance enhancement by means of combined adjustable-geometry and bypass methods. Applied Thermal Engineering 149:950–59. doi:10.1016/j.applthermaleng.2018.12.052.
  • Chukanova, E., N. Stosic, A. Kovacevic, and S. Rane. 2012. Identification and quantification of start up process in oil flooded screw compressors. In ASME international mechanical engineering congress and exposition, Vol. 45226, 81–88. Houston, Texas, USA: American Society of Mechanical Engineers.
  • Compressors: Selection and Sizing - Royce N. Brown - Knihy Google. n.d. Accessed October 3, 2021. https://books.google.cz/books?hl=cs&lr=&id=tLxpL65v0lYC&oi=fnd&pg=PP15&dq=compressors+selection&ots=ixvhhzwixl&sig=lB4N9nWXKDHzmZ_3bXo-2paJ-Es&redir_esc=y#v=onepage&q=compressors%20selection&f=false
  • Dias, F., and J.-M. Ghidaglia. 2018. Slamming: Recent progress in the evaluation of impact pressures. Annual Review of Fluid Mechanics 50 (1):243–73. doi:10.1146/annurev-fluid-010816-060121.
  • Diegel, O., A. Nordin, and D. Motte. 2019. Additive manufacturing technologies. In A practical guide to design for additive manufacturing, ed. O. Diegel, A. Nordin, and D. Motte, 19–39. US: Springer Singapore. doi:10.1007/978-981-13-8281-9_2.
  • Dullien, F. A. L. 2012. Porous media: Fluid transport and pore structure. Cambridge, Massachusetts: Academic press.
  • Ferreira, G. 2013. Alternative energies: Updates on progress, Vol. 34. Heidelberg, Germany: Springer Science & Business Media.
  • Gockel, J., L. Sheridan, B. Koerper, and B. Whip. 2019. The influence of additive manufacturing processing parameters on surface roughness and fatigue life. International Journal of Fatigue 124:380–88. doi:10.1016/j.ijfatigue.2019.03.025.
  • Golijanek-Jȩdrzejczyk, A., D. Świsulski, R. Hanus, M. Zych, and P. Leszek. 2017. Estimating the uncertainty of the liquid mass flow using the orifice plateVol. 143 02030. EPJ Web Conf. doi: 10.1051/EPJCONF/201714302030.
  • He, X., W. Jiao, C. Wang, and W. Cao. 2019. Influence of surface roughness on the pump performance based on computational fluid dynamics. IEEE Access 7:105331–41. doi:10.1109/ACCESS.2019.2932021.
  • Honus, S., M. Jadlovec, Z. Šmída, J. Výtisk, and M. Vrtek. 2022. Verification of the analytical design model of a subcritical air ejector and assessment of the behavior of the manufactured machine under different operating conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (3):8024–39. doi:10.1080/15567036.2022.2118909.
  • Huang, K., J. W. Wan, C. X. Chen, Y. Q. Li, D. F. Mao, and M. Y. Zhang. 2013. Experimental investigation on friction factor in pipes with large roughness. Experimental Thermal & Fluid Science 50:147–53. doi:10.1016/j.expthermflusci.2013.06.002.
  • ISO 5167-1:2022. n.d. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full — Part 1: General principles and requirements. Accessed April 19, 2023. https://www.iso.org/standard/79179.html
  • ISO 5167-2:2022. n.d. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full — Part 2: Orifice plates. Accessed April 19, 2023. https://www.iso.org/standard/79180.html
  • JIS B. 2017. 0601 Geometrical Product Specifications (GPS)-Surface texture: Profile method—Terms, definitions and surface texture parameters. US: International Organization for Standardization.
  • Kadivar, M., D. Tormey, and G. McGranaghan. 2022. CFD of roughness effects on laminar heat transfer applied to additive manufactured minichannels. Heat & Mass Transfer/Waerme- und Stoffuebertragung. doi:10.1007/s00231-022-03268-1.
  • Khotyanovsky, D., and A. Kudryavtsev. 2018. Numerical study of surface roughness effects in the boundary layer of a blunted cone in a supersonic flow. In AIP Conf Proc, ed. R. Dipen Kumar, P. L. Verma, V. B. Tungikar and Y. J. Bhalerao, Vol. 2027, 030116. Maharashtra, India: AIP Publishing LLC.
  • Klyuev, R. V., T. V. Bosikov II, and M. A. Gobeev. 2020. Improving the energy efficiency of transport equipment in ore mining. In IOP Conf Ser Mater Sci Eng, Vol. 918, 012124. Bristol, United Kingdom: IOP Publishing.
  • Kracík, J. 2018. Aerodynamické ucpání v nadzvukovém ejektoru.
  • Lahlou, S. 2010. System innovation for sustainability 4. London, United Kingdom: Greenleaf Publishing.
  • Lamberts, O., P. Chatelain, and Y. Bartosiewicz. 2017. New methods for analyzing transport phenomena in supersonic ejectors. International Journal of Heat and Fluid Flow 64:23–40. doi:10.1016/j.ijheatfluidflow.2017.01.009.
  • LaNasa, P. J., and E. L. Upp. 2014. Fluid flow measurement: A practical guide to accurate flow measurement. Oxford, United Kingdom: Butterworth-Heinemann.
  • Maleki, E., S. Bagherifard, M. Bandini, and M. Guagliano. 2021a. Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Additive Manufacturing 37:37. doi:10.1016/j.addma.2020.101619.
  • Maleki, E., S. Bagherifard, M. Bandini, and M. Guagliano. 2021b. Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Additive Manufacturing 37:101619. doi:10.1016/j.addma.2020.101619.
  • Mirabal, A., I. Loza-Hernandez, C. Clark, D. E. Hooks, M. McBride, and J. A. Stull. 2023. Roughness measurements across topographically varied additively manufactured metal surfaces. Additive Manufacturing 69. doi:10.1016/j.addma.2023.103540.
  • New Fuel Mass Flow Meter. n.d. A modern and reliable approach to continuous and accurate fuel consumption measurement on JSTOR. Accessed October 2, 2021. https://www.jstor.org/stable/44687018.
  • Nguyen, T. T., V. T. Tran, T. H. N. Pham, V.-T. Nguyen, N. C. Thanh, H. M. N. Thi, N. V. A. Duy, D. N. Thanh, and V. T. T. Nguyen. 2023. Influences of material selection, infill ratio, and layer height in the 3D printing cavity process on the surface roughness of printed patterns and casted products in investment casting. Micromachines (Basel) 14 (2):395. doi:10.3390/mi14020395.
  • Pereira, M. 2009a. Flow meters: Part 1. IEEE Instrumentation & Measurement Magazine 12 (1):18–26. doi:10.1109/MIM.2009.4762948.
  • Pereira, M. 2009b. Flow meters: Part 1: Part 18 in a series of tutorials in instrumentation and measurement. IEEE instrumentation & measurement magazine 12 (1):18–26. doi:10.1109/MIM.2009.4762948.
  • Rane, S., N. Stosic, and A. Dhunput. 2014. Prediction of heat transfer and visualisation of temperature field in screw compressors. In ASME international mechanical engineering congress and exposition, Vol. 46552, V08AT10A074. Montreal, Quebec, Canada: American Society of Mechanical Engineers.
  • Rogié, B., M. Ryhl Kærn, C. Wen, and E. Rothuizen. 2020. Numerical optimization of a novel gas-gas ejector for fuelling of hydrogen vehicles. International Journal of Hydrogen Energy 45 (41):21905–19. doi:10.1016/J.IJHYDENE.2020.05.169.
  • Shahbaz, M., and H. H. Lean. 2012. Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia. Energy Policy 40:473–79. doi:10.1016/j.enpol.2011.10.050.
  • Šmída, Z., K. Kolarčík, and S. Honus. 2020. Ideal mathematical model of shock compression and shock expansion. Open Engineering 9 (1):683–96. doi:10.1515/ENG-2019-0079/MACHINEREADABLECITATION/RIS.
  • Spitzer, D. W. 1984. Industrial flow measurement. 3rd ed., pp. 443. International Society of Automation.
  • Stefopoulos, G., S. Rigas, P. Tsirikoglou, A. I. Kalfas 2022. Evaluation of pressure and species concentration measurement using uncertainty propagation. E3S Web of Conferences, Santorini, Greece, vol. 345, 02008. EDP Sciences.
  • Stosic, N. 2015. On heat transfer in screw compressors. International Journal of Heat and Fluid Flow 51:285–97. doi:10.1016/j.ijheatfluidflow.2014.10.026.
  • Sumeru, K., S. Sulaimon, H. Nasution, and F. N. Ani. 2014. Numerical and experimental study of an ejector as an expansion device in split-type air conditioner for energy savings. Energy Buildings 79:98–105. doi:10.1016/j.enbuild.2014.04.043.
  • Tashtoush, B., A. Alshare, and S. Al-Rifai. 2015. Hourly dynamic simulation of solar ejector cooling system using TRNSYS for Jordanian climate. Energy Conversion and Management 100:288–99. doi:10.1016/J.ENCONMAN.2015.05.010.
  • Taylor, J. R., and W. Thompson. 1982. An introduction to error analysis: The study of uncertainties in physical measurements, Vol. 2. Sausalito, California, USA: Springer.
  • Tyagi, P., T. Goulet, N. Chuenprateep, R. Stephenson, R. Knott, A. Reddick, D. Shetty, J. Schlitzer, C. Benton, and F. Garcia-Moreno. 2018. Chemical polishing based surface finishing of 3d printed steel components. In ASME international mechanical engineering congress and exposition, Vol. 52019, V002T02A020. Pittsburgh, Pennsylvania, USA: American Society of Mechanical Engineers.
  • Vock, S., B. Klöden, A. Kirchner, T. Weißgärber, and B. Kieback. 2019. Powders for powder bed fusion: A review. Progress in Additive Manufacturing 4 (4):383–97. doi:10.1007/s40964-019-00078-6.
  • Volynkin, V. N., M. S. Lur’e, and E. M. Sheinin. 2006. The effect of roughness of the inner surface of the pipeline on the error of measurements using immersed vortex flow meters. Measurement Techniques 49 (2):158–62. doi:10.1007/s11018-006-0082-z.
  • Výtisk, J., S. Honus, V. Kočí, M. Pagáč, J. Hajnyš, M. Vujanovic, and M. Vrtek. 2022. Comparative study by life cycle assessment of an air ejector and orifice plate for experimental measuring stand manufactured by conventional manufacturing and additive manufacturing. Sustainable Materials and Technologies 32:e00431. doi:10.1016/j.susmat.2022.e00431.
  • Wang, C., L. Wang, T. Zou, and H. Zhang. 2017. Influences of area ratio and surface roughness on homogeneous condensation in ejector primary nozzle. Energy Conversion and Management 149:168–74. doi:10.1016/j.enconman.2017.07.025.
  • Wang, C.-N., F.-C. Yang, V. T. T. Nguyen, and N. T. M. Vo. 2022. CFD analysis and optimum design for a centrifugal pump using an effectively artificial intelligent algorithm. Micromachines (Basel) 13 (8):1208. doi:10.3390/mi13081208.
  • Wu, Y., M. Li, J. Wang, Y. Wang, X. An, H. Fu, H. Zhang, X. Yang, and Q. Zou. 58, 2022. Powder-bed-fusion additive manufacturing of molybdenum: Process simulation, optimization, and property prediction. Additive Manufacturing 58:103069. doi:10.1016/j.addma.2022.103069.
  • Zhang, S., J. Luo, Q. Wang, and G. Chen. 2018. Step utilization of energy with ejector in a heat driven freeze drying system. Energy 164:734–44. doi:10.1016/J.ENERGY.2018.08.195.
  • Zhang, C., S. Wang, J. Li, Y. Zhu, T. Peng, and H. Yang. 2020. Additive manufacturing of products with functional fluid channels: A review. Additive Manufacturing 36:101490. doi:10.1016/j.addma.2020.101490.
  • Zhang, J., X. Zhai, and S. Li. 2020. Numerical studies on the performance of ammonia ejectors used in ocean thermal energy conversion system. Renew Energy 161:766–76. doi:10.1016/j.renene.2020.07.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.