40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on the combustion characteristics of an asymmetric swirling flameless combustor using biogas

ORCID Icon, ORCID Icon, , &
Pages 5536-5551 | Received 10 Jul 2023, Accepted 02 Apr 2024, Published online: 11 Apr 2024

References

  • Abdulrahman, M. B., M. Abdul Wahid, A. Kasani, A. H. Asmayou, M. F. Mohd Yasin, M. M. Rahman, and A. D. Ghazali. 2022. Configuration effects of liquid fuel flameless combustion characteristics in a forward flow laboratory-scale furnace. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (4):9620–32. doi:10.1080/15567036.2022.2134517.
  • Abuelnuor, A. A. A., M. A. Wahid, A. Saat, M. M. Sies, M. K. Elbasheer, S. E. Hosseini, A. G. Dairobi, H. A. Mohammed, and A. N. Darus. 2013. Review of numerical studies on NOx emission in the flameless combustion. Applied Mechanics & Materials 388 (X):235–40. doi:10.4028/www.scientific.net/AMM.388.235.
  • Alwan, R. A. 2016. Thermal and fluid flow analysis of swirling flameless combustion. PhD diss., Universiti Teknologi Malaysia.
  • Boussetla, S., A. Mameri, and A. Hadef. 2021. NO emission from non-premixed MILD combustion of biogas-syngas mixtures in opposed jet configuration. International Journal of Hydrogen Energy 46 (75):37641–55. doi:10.1016/j.ijhydene.2021.01.074.
  • Cho, E. S., D. Shin, J. Lu, W. de Jong, and D. J. E. M. Roekaerts. 2013. Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions. Applied Energy 107 (Jul):25–32. doi:10.1016/J.APENERGY.2013.01.035.
  • Colorado, A. F., B. A. Herrera, and A. A. Amell. 2010. Performance of a flameless combustion furnace using biogas and natural gas. Bioresource Technology 101 (7):2443–49. doi:10.1016/j.biortech.2009.11.003.
  • Dai, H., H. Dai, P. Yang, Z. Wang, Z. Song, and X. Wang. 2021, Nov. Combustion characteristics of a self-preheating burner with gradually-varied porous media. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–15. doi:10.1080/15567036.2021.2008063.
  • Gabler, H. C. 1998. An experimental and numerical investigation of asymmetrically-fueled whirl flames. PhD diss., Princeton University.
  • Glarborg, P., and L. L. B. Bentzen. 2008. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy and Fuels 22 (1):291–96. doi:10.1021/ef7005854.
  • Gupta, S. K., A. K. Kushwaha, and V. K. Arghode. 2020. Investigation of peripheral vortex reverse flow (PVRF) combustor for gas turbine engines. Energy 193 (Feb):116766. doi:10.1016/J.ENERGY.2019.116766.
  • Ismail, N. A., M. M. Rahman, M. A. Abuelnour, I. Jabbar, A. Saat, and M. U. Kaisan. 2020. Long term energy development pathways for Nigeria: A scenario based analysis. Proceedings of the International Conference on Industrial Engineering and Operations Management (March):2721–34.
  • Ismail, N. A., M. A. Wahid, A. Sa, and A. Shitu. 2023. A review on the combustion characteristics of an asymmetric swirling combustor in flameless mode. Evergreen 10 (3):1522–37. doi:10.5109/7151700.
  • Jahangirian, S., A. Engeda, and I. S. Wichman. Nov 2009. Thermal and chemical structure of biogas counterflow diffusion flames. Energy and Fuels 23 (11):5312–21. doi:10.1021/ef9002044.
  • Kabeyi, M. J. B., O. A. Olanrewaju, and A. Messineo. 2022. Biogas production and applications in the sustainable energy transition. Journal of Energy 2022:1–43. doi:10.1155/2022/8750221.
  • Kaisan, M. U., S. Narayan, N. A. Ismail, Y. S. Dambatta, and D. T. Pham. 2021, Jan. Assessment of in-cylinder pressure in diesel engines using novel combustion indices. Cogent Engineering 8(1):1920561. doi:10.1080/23311916.2021.1920561.
  • Khaleghi, M., S. E. Hosseini, and M. A. Wahid. Sep 2015. Experimental and numerical investigations of biogas vortex combustion. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 229 (6):662–76. doi:10.1177/0957650915584717.
  • Minamoto, Y., N. Swaminathan, R. S. Cant, and T. Leung. 2014. Reaction zones and their structure in MILD combustion. Combustion Science and Technology 186 (8):1075–96. doi:10.1080/00102202.2014.902814.
  • Nayak, S., M. A. Hassan, and M. Paswan. 2023, Aug. Experimentally validated axisymmetric simulation for thermo-fluid performance of an active flat-plate solar water heater at low flow rates. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45(3):6797–812. doi:10.1080/15567036.2023.2215199.
  • Noor, M. M. 2015. Experimental and numerical study of MILD combustion in an open-end furnace with exhaust gas recirculation using methane and biogas. PhD diss., University of Southern Queensland.
  • N, H., S. V, K. S V, and K. M. 2023, Aug. Influence of hydrogen enrichment on the combustion, efficiency and emissions of dual fuel engine. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45(3):7405–22. doi:10.1080/15567036.2019.1675816.
  • Okumuş, F., C. Kaya, and G. Kökkülünk. 2023, Aug. NOX based comparative analysis of a CI engine fueled with water in diesel emulsion. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45(3):6710–29. doi:10.1080/15567036.2020.1839147.
  • Raj, R., and A. Chaurasia. 2016. Flameless combustion: A review. IJSTE-International Journal of Engineering Science and Technology 3 (4):70–75.
  • Reddy, V. M., A. Katoch, W. L. Roberts, and S. Kumar. 2015. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels. Proceedings of the Combustion Institute International Symposium on Combustion 35 (3):3581–89. doi:10.1016/j.proci.2014.05.070.
  • Ryckebosch, E., M. Drouillon, and H. Vervaeren. May 2011. Techniques for transformation of biogas to biomethane. Biomass and Bioenergy 35 (5):1633–45. doi:10.1016/J.BIOMBIOE.2011.02.033.
  • Saqr, K. M. 2011. Aerodynamics and Thermochemistry of Turbulent confined Asymmetric Vortex Flames. A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering).
  • Wang, H., Z. Xu, S. Tang, X. Chen, and Z. Liu. 2021, Mar. Influence of concentration gradient on methane–air explosion propagation: An experimental study. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–13. doi:10.1080/15567036.2021.1903621.
  • Weber, R., A. K. Gupta, and S. Mochida. 2020. High temperature air combustion (HiTAC): How it all started for applications in industrial furnaces and future prospects. Applied Energy 278 (June):115551. doi:10.1016/j.apenergy.2020.115551.
  • Xing, F., A. Kumar, Y. Huang, S. Chan, C. Ruan, S. Gu, and X. Fan. 2017. Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application. Applied Energy 193:28–51. doi:10.1016/j.apenergy.2017.02.010.
  • Yang, W., and W. Blasiak. Feb 2005. Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air. Energy 30 (2–4):385–98. doi:10.1016/J.ENERGY.2004.05.011.
  • Yuan, W., and T. J. Bandosz. Dec 2007. Removal of hydrogen sulfide from biogas on sludge-derived adsorbents. Fuel 86 (17–18):2736–46. doi:10.1016/J.FUEL.2007.03.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.