86
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Energy implications, environmental impact, applications, and challenges of metal air batteries

ORCID Icon & ORCID Icon
Pages 5888-5903 | Received 09 Jan 2024, Accepted 03 Apr 2024, Published online: 19 Apr 2024

References

  • Abdelkareem, M. A., M. Ayoub, S. Khuri, A. H. Alami, E. T. Sayed, T. D. Deepa, and A. G. Olabi. 2023. Environmental aspects of batteries. Sustainable Horizons 8:100074. doi:10.1016/j.horiz.2023.100074.
  • Agajie, T. F., A. Ali, A. Fopah-Lele, I. Amoussou, B. Khan, C. L. R. Velasco, and E. Tanyi. 2023. A comprehensive review on techno-economic analysis and optimal sizing of hybrid renewable energy sources with energy storage systems. Energies 16 (2):642. doi:10.3390/en16020642.
  • Aktaş, A., and Y. Kirçiçek. 2021. Solar Hybrid Systems and Energy Storage Systems. In Solar Hybrid Systems, 87–125. Elsevier. doi:10.1016/B978-0-323-88499-0.00005-7.
  • Arai, H., and M. Hayashi. 2009. secondary batteries – metal-air systems | overview (secondary and primary). In Encyclopedia of electrochemical power sources, 347–55. Elsevier. doi:10.1016/B978-044452745-5.00099-X.
  • Arshad, F., J. Lin, N. Manurkar, E. Fan, A. Ahmad, M.-N. Tariq, F. Wu, R. Chen, and L. Li. 2022. Life cycle assessment of lithium-ion batteries: A critical review. Resources, Conservation and Recycling 180:106164. doi:10.1016/j.resconrec.2022.106164.
  • Asmare Alemu, M., A. Ketema Worku, and M. Zegeye Getie. 2023. Recent advancement of electrically rechargeable alkaline metal-air batteries for future mobility. Results in Chemistry 6:101048. doi:10.1016/j.rechem.2023.101048.
  • Bansal, R., P. Menon, and R. C. Sharma. 2020. Silicon–air batteries: Progress, applications and challenges. SN Applied Sciences 2 (6):1141. doi:10.1007/s42452-020-2925-7.
  • Beaudin, M., H. Zareipour, A. Schellenberg, and W. Rosehart. 2015. Energy storage for mitigating the variability of renewable electricity sources. In Energy storage for smart grids, 1–33. Elsevier. doi:10.1016/B978-0-12-410491-4.00001-4.
  • Cai, Y., H. Liu, X. Chen, X. Yang, L. Zhang, D. Li, and D. Yang. 2022. Porous biochar aerogel loaded PtFe alloys derived from natural marine polysaccharide for efficient oxygen reduction. Materials Today Sustainability 20:100222. doi:10.1016/j.mtsust.2022.100222.
  • Chen-Glasser, M., A. E. Landis, and S. C. DeCaluwe. 2023. Carbon footprint of Li-Oxygen batteries and the impact of material and structure selection. Journal of Energy Storage 60:106684. doi:10.1016/j.est.2023.106684.
  • Chen, K., S. Kim, R. Rajendiran, K. Prabakar, G. Li, Z. Shi, C. Jeong, J. Kang, and O. L. Li. 2021. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. Journal of Colloid and Interface Science 582:977–90. doi:10.1016/j.jcis.2020.08.101.
  • Chen, D., X. Zhang, Y. Zhang, Z. Liu, F. Deng, and Y. Yu. 2023. Si protected by metal-organic segments as anodes in Si-air batteries. Surfaces and Interfaces 38:102777. doi:10.1016/j.surfin.2023.102777.
  • Chi, X., M. Li, J. Di, P. Bai, L. Song, X. Wang, F. Li, S. Liang, J. Xu, and J. Yu. 2021. A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature 592 (7855):551–57. doi:10.1038/s41586-021-03410-9.
  • da Silva Lima, L., M. Quartier, A. Buchmayr, D. Sanjuan-Delmás, H. Laget, D. Corbisier, J. Mertens, and J. Dewulf. 2021. Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustainable Energy Technologies and Assessments 46:101286. doi:10.1016/j.seta.2021.101286.
  • Deyab, M. A., and Q. Mohsen. 2021. Improved battery capacity and cycle life in iron-air batteries with ionic liquid. Renewable and Sustainable Energy Reviews 139:110729. doi:10.1016/j.rser.2021.110729.
  • Fu, J., Z. P. Cano, M. G. Park, A. Yu, M. Fowler, and Z. Chen. 2017. Electrically rechargeable zinc–air batteries: Progress, challenges, and perspectives. Advanced Materials 29 (7). doi: 10.1002/adma.201604685.
  • Fu, J., D. U. Lee, F. M. Hassan, L. Yang, Z. Bai, M. G. Park, and Z. Chen. 2015. Flexible high‐energy polymer‐electrolyte‐based rechargeable zinc–air batteries. Advanced Materials 27 (37):5617–22. doi:10.1002/adma.201502853.
  • Halkos, G. E., and E.-C. Gkampoura. 2020. Reviewing usage, potentials, and limitations of renewable energy sources. Energies 13 (11):2906. doi:10.3390/en13112906.
  • Han, X., Y. Qu, D. Li, Y. Dong, D. Chen, Y. Yu, N. Ren, and Y. Feng. 2021. Combined microbial electrolysis cell–iron-air battery system for hydrogen production and swine wastewater treatment. Process Biochemistry 101:104–10. doi:10.1016/j.procbio.2020.11.002.
  • Hou, B., S. Shangguan, Y. Niu, Y. Su, C. Yu, X. Liu, Z. Li, J. Li, X. Liu, and K. Zhao. 2024. Unique properties of rock salt and application of salt caverns on underground energy storage: A mini review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 46 (1):621–35. doi:10.1080/15567036.2023.2288295.
  • Kulkarni, A., S. Siahrostami, A. Patel, and J. K. Nørskov. 2018. Understanding catalytic activity trends in the oxygen reduction reaction. Chemical Reviews 118 (5):2302–12. doi:10.1021/acs.chemrev.7b00488.
  • Lai, X., Q. Chen, X. Tang, Y. Zhou, F. Gao, Y. Guo, R. Bhagat, and Y. Zheng. 2022. Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. ETransportation 12:100169. doi:10.1016/j.etran.2022.100169.
  • Liang, B., X. Zhang, M. Zhong, C. Lv, and K. Li. 2021. Transition metal (fe, Co, Ni) and sulfur codoped nitrogen-enriched hydrothermal carbon as high-performance cathode catalyst for microbial fuel cell. Journal of Power Sources 506:230178. doi:10.1016/j.jpowsour.2021.230178.
  • Li, J., Y. Deng, L. Leng, M. Liu, L. Huang, X. Tian, H. Song, X. Lu, and S. Liao. 2020. MOF-Templated sword-like Co3O4@NiCo2O4 sheet arrays on carbon cloth as highly efficient Li–O2 battery cathode. Journal of Power Sources 450:227725. doi:10.1016/j.jpowsour.2020.227725.
  • Li, Y., and J. Lu. 2017. Metal–air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Letters 2 (6):1370–77. doi:10.1021/acsenergylett.7b00119.
  • Lithium-Ion Battery - Clean Energy Institute. n.d. Accessed May 13, 2023. https://www.cei.washington.edu/education/science-of-solar/battery-technology/
  • Liu, J., C. Chu, L. Wei, J. Feng, and J. Shen. 2023. Iron/cobalt-decorated nitrogen-rich 3D layer-stacked porous biochar as high-performance oxygen reduction air-cathode catalyst in microbial fuel cell. Biosensors and Bioelectronics 222:114926. doi:10.1016/j.bios.2022.114926.
  • Liu, J., X. Fan, G. Ning, M. Zheng, K. Shi, Y. Sun, Y. Gao, Y. Zhang, and H. Wang. 2022. The high-efficiency electrochemical catalysis of nitrogen-doped carbon nanotubes materials modified with Cu–fe oxide alloy nanoparticles for HER and ORR. International Journal of Hydrogen Energy 47 (80):34090–101. doi:10.1016/J.IJHYDENE.2022.08.011.
  • Liu, C., Y. Li, J. Cui, Z. Qian, and D. Liu. 2022. Fabrication of ORR/OER electrocatalysts with simple one-step strategy from sustainable cornstalks. Catalysis Communications 171:106525. doi:10.1016/j.catcom.2022.106525.
  • Liu, Q., Z. Pan, E. Wang, L. An, and G. Sun. 2020. Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Materials 27:478–505. doi:10.1016/j.ensm.2019.12.011.
  • Li, M., J. Zhou, Y.-G. Bi, S.-Q. Zhou, and C.-H. Mo. 2020. Transition metals (co, Mn, Cu) based composites as catalyst in microbial fuel cells application: The effect of catalyst composition. Chemical Engineering Journal 383:123152. doi:10.1016/j.cej.2019.123152.
  • Lowy, D., and B. Mátyás. 2019. Sea water activated magnesium-air reserve batteries: Calculation of specific energy and energy density for various cell geometries. DRC Sustainable Future: Journal of Environment, Agriculture, and Energy 1 (1):1–6. doi:10.37281/DRCSF/1.1.1.
  • Maiche, L. 1878. (Patent 127,069).
  • Mansfield, A., A. Boehman, and D. Gorsich. 2021. Assessment of conventional and alternative energy carriers for use in military vehicle platforms. Journal of Energy Resources Technology 143 (4). doi: 10.1115/1.4048253.
  • Metal-air Battery Market by Metal, Application,Type. 2022. https://www.marketsandmarkets.com/Market-Reports/metal-air-battery-market-90446479.html
  • Miao, W., W. Liu, Y. Ding, R. Guo, J. Zhao, Y. Zhu, H. Yu, and Y. Zhu. 2022. Cobalt (iron), nitrogen and carbon doped mushroom biochar for high-efficiency oxygen reduction in microbial fuel cell and Zn-air battery. Journal of Environmental Chemical Engineering 10 (5):108474. doi:10.1016/j.jece.2022.108474.
  • Mir, S., S. Vij, and N. Dhawan. 2023. Evaluation of end-of-life zinc-air hearing aid batteries for zinc recovery. Minerals Engineering 198:108082. doi:10.1016/j.mineng.2023.108082.
  • Moni, P., M. Mooste, K. Tammeveski, K. Rezwan, and M. Wilhelm. 2021. One-dimensional polymer-derived ceramic nanowires with electrocatalytically active metallic silicide tips as cathode catalysts for Zn–air batteries. RSC Advances 11 (63):39707–17. doi:10.1039/D1RA05688C.
  • Notton, G., M.-L. Nivet, C. Voyant, C. Paoli, C. Darras, F. Motte, and A. Fouilloy. 2018. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renewable and Sustainable Energy Reviews 87:96–105. doi:10.1016/j.rser.2018.02.007.
  • Outlook for energy demand – World Energy Outlook 2022 – Analysis - IEA. n.d. Accessed October 2, 2023. https://www.iea.org/reports/world-energy-outlook-2022/outlook-for-energy-demand
  • Parker, C. D. 2009. APPLICATIONS – STATIONARY | Energy Storage Systems: Batteries. In Encyclopedia of electrochemical power sources, 53–64. Elsevier. doi:10.1016/B978-044452745-5.00382-8.
  • Pei, Z., Z. Yuan, C. Wang, S. Zhao, J. Fei, L. Wei, J. Chen, C. Wang, R. Qi, Z. Liu, et al. 2020. A flexible rechargeable zinc–air battery with excellent low‐temperature adaptability. Angewandte Chemie International Edition 59 (12):4793–99. doi:10.1002/anie.201915836.
  • Porzio, J., and C. D. Scown. 2021. Life‐cycle assessment considerations for batteries and battery materials. Advanced Energy Materials 11 (33). doi: 10.1002/aenm.202100771.
  • Rechargeable Zn-Air Batteries with Pulse-Power Capability. (n.d.). Accessed January 6, 2024. https://apps.dtic.mil/sti/citations/AD1103257
  • Ritchie, H., M. Roser, and P. Rosado. 2022. Energy. Our World in Data. https://ourworldindata.org/energy.
  • Santos, F., A. Urbina, J. Abad, R. López, C. Toledo, and A. J. Fernández Romero. 2020. Environmental and economical assessment for a sustainable Zn/air battery. Chemosphere 250:126273. doi:10.1016/j.chemosphere.2020.126273.
  • Shah, H., J. Chakravorty, and N. G. Chothani. 2023. Protection challenges and mitigation techniques of power grid integrated to renewable energy sources: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (2):4195–210. doi:10.1080/15567036.2023.2203111.
  • Šimić, Z., D. Topić, G. Knežević, and D. Pelin. 2021. Battery energy storage technologies overview. International Journal of Electrical and Computer Engineering Systems 12 (1):53–65. doi:10.32985/ijeces.12.1.6.
  • Sinha, A. P., T. S. Thomas, and D. Mandal. 2023. An inorganic-organic protective anode interface towards high‐performance Al-air battery. Energy Storage Materials 63:102988. doi:10.1016/j.ensm.2023.102988.
  • Spanos, C., D. E. Turney, and V. Fthenakis. 2015. Life-cycle analysis of flow-assisted nickel zinc-, manganese dioxide-, and valve-regulated lead-acid batteries designed for demand-charge reduction. Renewable and Sustainable Energy Reviews 43:478–94. doi:10.1016/j.rser.2014.10.072.
  • Su, P., W. Fu, Z. Hu, J. Jing, and M. Zhou. 2022. Insights into transition metal encapsulated N-doped CNTs cathode for self-sufficient electrocatalytic degradation. Applied Catalysis B: Environmental 313:121457. doi:10.1016/j.apcatb.2022.121457.
  • Sweeney, C., R. J. Bessa, J. Browell, and P. Pinson. 2020. The future of forecasting for renewable energy. WIREs Energy and Environment 9 (2). doi: 10.1002/wene.365.
  • Tharani, S., and A. Prithiba. 2024. Sustainable biomass conversion into activated carbon for supercapacitor devices: A promising approach toward renewable energy storage. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 46 (1):1165–76. doi:10.1080/15567036.2023.2293242.
  • Wang, F., Y. Deng, and C. Yuan. 2020. Life cycle assessment of lithium oxygen battery for electric vehicles. Journal of Cleaner Production 264:121339. doi:10.1016/j.jclepro.2020.121339.
  • Wang, L., J. Hu, Y. Yu, K. Huang, and Y. Hu. 2020. Lithium-air, lithium-sulfur, and sodium-ion, which secondary battery category is more environmentally friendly and promising based on footprint family indicators? Journal of Cleaner Production 276:124244. doi:10.1016/j.jclepro.2020.124244.
  • Wang, Y., H. Y. H. Kwok, W. Pan, Y. Zhang, H. Zhang, X. Lu, and D. Y. C. Leung. 2019. Combining Al-air battery with paper-making industry, a novel type of flexible primary battery technology. Electrochimica Acta 319:947–57. doi:10.1016/j.electacta.2019.07.049.
  • Weinrich, H., Y. E. Durmus, H. Tempel, H. Kungl, and R.-A. Eichel. 2019. Silicon and iron as resource-efficient anode materials for ambient-temperature metal-air batteries: A review. Materials 12 (13):2134. doi:10.3390/ma12132134.
  • Wen, X., Q. Zhang, and J. Guan. 2020. Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews 409:213214. doi:10.1016/j.ccr.2020.213214.
  • Xiong, X., R. Jiang, B. Deng, J. Yang, and D. Wang. 2020. Bionic structural design and electrochemical manufacture of WC/N-Doped carbon hybrids as efficient ORR catalyst. Journal of the Electrochemical Society 167 (6):064502. doi:10.1149/1945-7111/ab7b82.
  • Xu, N., J. A. Wilson, Y.-D. Wang, T. Su, Y. Wei, J. Qiao, X.-D. Zhou, Y. Zhang, and S. Sun. 2020. Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. Applied Catalysis B: Environmental 272:118953. doi:10.1016/j.apcatb.2020.118953.
  • Yaqoob, L., T. Noor, and N. Iqbal. 2022. An overview of metal-air batteries, current progress, and future perspectives. Journal of Energy Storage 56:106075. doi:10.1016/j.est.2022.106075.
  • Ye, L., Y. Hong, M. Liao, B. Wang, D. Wei, H. Peng, L. Ye, Y. Hong, M. Liao, B. Wang, et al. 2020. Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Materials 28:364–74. doi:10.1016/j.ensm.2020.03.015.
  • Yudhistira, R., D. Khatiwada, and F. Sanchez. 2022. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. Journal of Cleaner Production 358:131999. doi:10.1016/j.jclepro.2022.131999.
  • Yu, Y., S. Gao, and S. Hu. 2021. Si modified by Zn and Fe as anodes in Si-air batteries with ameliorative properties. Journal of Alloys and Compounds 883:160902. doi:10.1016/j.jallcom.2021.160902.
  • Zackrisson, M., K. Fransson, J. Hildenbrand, G. Lampic, and C. O’Dwyer. 2016. Life cycle assessment of lithium-air battery cells. Journal of Cleaner Production 135:299–311. doi:10.1016/j.jclepro.2016.06.104.
  • Zago, S., M. Bartoli, M. Muhyuddin, G. M. Vanacore, P. Jagdale, A. Tagliaferro, C. Santoro, and S. Specchia. 2022. Engineered biochar derived from pyrolyzed waste tea as a carbon support for Fe-N-C electrocatalysts for the oxygen reduction reaction. Electrochimica Acta 412:140128. doi:10.1016/j.electacta.2022.140128.
  • Zhang, S., M. Chen, X. Zhao, J. Cai, W. Yan, J. C. Yen, S. Chen, Y. Yu, and J. Zhang. 2021. Advanced noncarbon materials as catalyst supports and non-noble electrocatalysts for fuel cells and metal–air batteries. Electrochemical Energy Reviews 4 (2):336–81. doi:10.1007/s41918-020-00085-0.
  • Zhang, S., Y. Yang, L. Cheng, J. Sun, X. Wang, P. Nan, C. Xie, H. Yu, Y. Xia, B. Ge, et al. 2021. Quasi-solid-state electrolyte for rechargeable high-temperature molten salt iron-air battery. Energy Storage Materials 35:142–47. doi:10.1016/j.ensm.2020.11.014.
  • Zheng, J., J. Du, B. Wang, J. J. Klemeš, Q. Liao, and Y. Liang. 2023. A hybrid framework for forecasting power generation of multiple renewable energy sources. Renewable and Sustainable Energy Reviews 172:113046. doi:10.1016/j.rser.2022.113046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.