39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of daily photovoltaic plant energy output using machine learning

ORCID Icon &
Pages 5904-5924 | Received 12 Oct 2023, Accepted 05 Apr 2024, Published online: 19 Apr 2024

References

  • Ağbulut, Ü., A. E. Gürel, and Y. Biçen. 2021. Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews 135:110114. doi:10.1016/j.rser.2020.110114.
  • Ahmad, T., and H. Chen. 2018. Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment. Energy 160:1008–20. doi:10.1016/j.energy.2018.07.084.
  • Alfadda, A., S. Rahman, and M. Pipattanasomporn. 2018. Solar irradiance forecast using aerosols measurements: A data driven approach. Solar Energy 170:924–39. doi:10.1016/j.solener.2018.05.089.
  • Antonanzas, J., N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de-Pison, and F. Antonanzas-Torres. 2016. Review of photovoltaic power forecasting. Solar Energy 136:78–111. doi:10.1016/j.solener.2016.06.069.
  • Aria, M., C. Cuccurullo, and A. Gnasso. 2021. A comparison among interpretative proposals for random forests. Machine Learning with Applications 6:100094. doi:10.1016/j.mlwa.2021.100094.
  • Azizi, N., M. Yaghoubirad, M. Farajollahi, and A. Ahmadi. 2023. Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output. Renew Energy 206:135–47. doi:10.1016/j.renene.2023.01.102.
  • Belmahdi, B., and A. BOUARDI. 2024. Short ‑ term solar radiation forecasting using machine learning models under different sky conditions: Evaluations and comparisons. Environmental Science and Pollution Research 31 (1):966–81. doi:10.1007/s11356-023-31246-5.
  • Bishop, C. M. 2006. Pattern recognition and machine learning, 1613–9011. Springer. doi:10.1007/978-0-387-45528-0.
  • Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 2017. Classification and Regression Trees. Routledge. doi:10.1201/9781315139470.
  • Carrera, B., and K. Kim. 2020. Comparison analysis of machine learning techniques for photovoltaic prediction using weather sensor data. Sensors (Switzerland) 20 (11):3129. doi:10.3390/s20113129.
  • Chicco, D., M. J. Warrens, and G. Jurman. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science 7:1–24. doi:10.7717/PEERJ-CS.623.
  • Cover, T. M., and P. E. Hart. 1967. Nearest neighbor pattern classification. IEEE Transactions on Information Theory / Professional Technical Group on Information Theory 13 (1):21–27. doi:10.1109/TIT.1967.1053964.
  • Deo, R. C., and M. Şahin. 2017. Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland. Renewable and Sustainable Energy Reviews 72:828–48. doi:10.1016/j.rser.2017.01.114.
  • Emang, D., M. Shitan, A. N. Abd Ghani, and K. M. Noor. 2010. Forecasting with univariate time series models: a case of export demand for peninsular malaysia’s moulding and chipboard. Journal of Sustainable Development 3 (3):157–61. doi:10.5539/jsd.v3n3p157.
  • Essam, Y., A. N. Ahmed, R. Ramli, K.-W. Chau, M. S. Idris Ibrahim, M. Sherif, A. Sefelnasr, and A. El-Shafie. 2022. Investigating photovoltaic solar power output forecasting using machine learning algorithms. Engineering Applications of Computational Fluid Mechanics 16 (1):2002–34. doi:10.1080/19942060.2022.2126528.
  • Fan, J., X. Wang, L. Wu, H. Zhou, F. Zhang, X. Yu, X. Lu, and Y. Xiang. 2018. Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Conversion and Management 164:102–11. doi:10.1016/j.enconman.2018.02.087.
  • Filho, D. B. F., J. A. Silva, and E. Rocha. 2011. What is R2 all about? Leviathan (São Paulo) 3 (3):60–8. 10.11606/issn.2237-4485.lev.2011.132282.
  • Ghimire, S., T. Nguyen-Huy, R. C. Deo, D. Casillas-Pérez, and S. Salcedo-Sanz. 2022. Efficient daily solar radiation prediction with deep learning 4-phase convolutional neural network, dual stage stacked regression and support vector machine CNN-REGST hybrid model. Sustainable Materials and Technologies 32:1–24. doi:10.1016/j.susmat.2022.e00429.
  • Gouda, S. G., Z. Hussein, S. Luo, and Q. Yuan. 2019. Model selection for accurate daily global solar radiation prediction in China. Journal of Cleaner Production 221:132–44. doi:10.1016/j.jclepro.2019.02.211.
  • Gueymard, C. A. 2014. A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renewable and Sustainable Energy Reviews 39:1024–34. doi:10.1016/j.rser.2014.07.117.
  • Gupta, P., and R. Singh. 2023. Sustainable energy, grids and networks forecasting hourly day-ahead solar photovoltaic power generation by assembling a new adaptive multivariate data analysis with a long short-term memory network. Sustainable Energy, Grids and Networks 35:101133. doi:10.1016/j.segan.2023.101133.
  • Haider, S. A., M. Sajid, H. Sajid, E. Uddin, and Y. Ayaz. 2022. Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad. Renewable Energy 198:51–60. doi:10.1016/j.renene.2022.07.136.
  • Jani, H. K., S. Singh, G. Nagababu, and A. Das. 2022. Temporal and spatial simultaneity assessment of wind-solar energy resources in India by statistical analysis and machine learning clustering approach. Energy 248:123586. doi:10.1016/j.energy.2022.123586.
  • Jebli, I., F. Z. Belouadha, M. I. Kabbaj, and A. Tilioua. 2021. Prediction of solar energy guided by Pearson correlation using machine learning. Energy 224:120109. doi:10.1016/j.energy.2021.120109.
  • Kaba, K., M. Sarıgül, M. Avcı, and H. M. Kandırmaz. 2018. Estimation of daily global solar radiation using deep learning model. Energy 162:126–35. doi:10.1016/j.energy.2018.07.202.
  • Kumari, P., and D. Toshniwal. 2021. Deep learning models for solar irradiance forecasting: A comprehensive review. Journal Cleaner Production 318:128566. doi:10.1016/j.jclepro.2021.128566.
  • Liu, Y., H. Qin, Z. Zhang, S. Pei, C. Wang, X. Yu, Z. Jiang, and J. Zhou. 2019. Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network. Applied Energy 253:113596. doi:10.1016/j.apenergy.2019.113596.
  • Liu, D., and K. Sun. 2019. Random forest solar power forecast based on classification optimization. Energy 187:115940. doi:10.1016/j.energy.2019.115940.
  • Mammeri, M., L. Dehimi, H. Bencherif, and F. Pezzimenti. 2023. Paths towards high perovskite solar cells stability using machine learning techniques. Solar Energy 249:651–60. doi:10.1016/j.solener.2022.12.002.
  • Ozoegwu, C. G. 2019. Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number. Journal of Cleaner Production 216:1–13. doi:10.1016/j.jclepro.2019.01.096.
  • Quinlan, J. R. 1986. Induction of decision trees. Machine Learning 1 (1):81–106. doi:10.1007/bf00116251.
  • Rabehi, A., M. Guermoui, and D. Lalmi. 2020. Hybrid models for global solar radiation prediction: A case study. International Journal of Ambient Energy 41 (1):31–40. doi:10.1080/01430750.2018.1443498.
  • Shukla, K. N., S. Rangnekar, and K. Sudhakar. 2016. Mathematical modelling of solar radiation incident on tilted surface for photovoltaic application at Bhopal, M.P., India. International Journal of Ambient Energy 37:579–88. doi:10.1080/01430750.2015.1023834.
  • Sobri, S., S. Koohi-Kamali, and N. A. Rahim. 2018. Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management 156:459–97. doi:10.1016/j.enconman.2017.11.019.
  • Solano, E. S., P. Dehghanian, and C. M. Affonso. 2022. Solar radiation forecasting using machine learning and ensemble feature selection. Energies 15 (19):7049. doi:10.3390/en15197049.
  • Wang, F., Z. Mi, S. Su, and H. Zhao. 2012. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies 5 (5):1355–70. doi:10.3390/en5051355.
  • Wang, F., Z. Zhen, Z. Mi, H. Sun, S. Su, and G. Yang. 2015. Solar irradiance feature extraction and support vector machines based weather status pattern recognition model for short-term photovoltaic power forecasting. Energy & Buildings 86:427–38. doi:10.1016/j.enbuild.2014.10.002.
  • Xu, H., and Y. Deng. 2017. Dependent evidence combination based on shearman coefficient and Pearson coefficient. IEEE Access 6:11634–40. doi:10.1109/ACCESS.2017.2783320.
  • Zang, H., L. Cheng, T. Ding, K. W. Cheung, M. Wang, Z. Wei, and G. Sun. 2020. Application of functional deep belief network for estimating daily global solar radiation: A case study in China. Energy 191:116502. doi:10.1016/j.energy.2019.116502.
  • Zhang, H., Y. Cao, Y. Zhang, and V. Terzija. 2018. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data. Applied Energy 216:172–82. doi:10.1016/j.apenergy.2018.02.094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.