49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance enhancement of composite salt hydrate-based thermochemical energy storage unit

, , &
Pages 5951-5973 | Received 02 Jan 2024, Accepted 24 Mar 2024, Published online: 19 Apr 2024

References

  • Alva, G., L. Liu, X. Huang, and G. Fang. 2017. Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews 68 (Part 1):693–706. doi:10.1016/j.rser.2016.10.021.
  • Aydin, D., S. P. Casey, X. Chen, and S. Riffat. 2016. Novel “open-sorption pipe” reactor for solar thermal energy storage. Energy Conversion and Management 121:321–34. doi:10.1016/j.enconman.2016.05.045.
  • Aydin, D., S. P. Casey, X. Chen, and S. Riffat. 2018. Numerical and experimental analysis of a novel heat pump driven sorption storage heater. Applied Energy 211:954–74. doi:10.1016/j.apenergy.2017.11.102.
  • Clark, R.-J., and M. Farid. 2021. Experimental investigation into the performance of novel SrCl2-based composite material for thermochemical energy storage. Journal of Energy Storage 36:102390. doi:10.1016/j.est.2021.102390.
  • Han, X., C. Zeng, S. Liu, Z. Wang, S. Deng, and H. Zhang. 2023. Numerical study on the heat and mass transfer in charging and discharging processes of a triangular honeycomb thermochemical energy storage reactor. Applied Thermal Engineering 219:119499. doi:10.1016/j.applthermaleng.2022.119499.
  • Hongois, S., F. Kuznik, P. Stevens, and J. J. Roux. 2011. Development and characterisation of a new MgSO4−zeolite composite for long-term thermal energy storage. Solar Energy Materials & Solar Cells 95 (7):1831–37. doi:10.1016/j.solmat.2011.01.050.
  • Humbert, G., Y. Ding, and A. Sciacovelli. 2022. Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures. Applied Energy 311:118633. doi:10.1016/j.apenergy.2022.118633.
  • Ji, W., H. Zhang, S. Liu, Z. Wang, and S. Deng. 2022. An experimental study on the binary hydrated salt composite zeolite for improving thermochemical energy storage performance. Renewable Energy 194:1163–73. doi:10.1016/j.renene.2022.06.024.
  • Kiyabu, S., P. Girard, and D. J. Siegel. 2022. Discovery of salt hydrates for thermal energy storage. Journal of the American Chemical Society 144 (47):21617. doi:10.1021/jacs.2c08993.
  • Lehmann, C., O. Kolditz, and T. Nagel. 2019. Modelling sorption equilibria and kinetics in numerical simulations of dynamic sorption experiments in packed beds of salt/zeolite composites for thermochemical energy storage. International Journal of Heat & Mass Transfer 128:1102–13. doi:10.1016/j.ijheatmasstransfer.2018.09.042.
  • Li, Q., F. Bai, B. Yang, Y. Wang, L. Xu, Z. Chang, Z. Wang, B. El Hefni, Z. Yang, S. Kubo, et al. 2018. Dynamic simulations of a honeycomb ceramic thermal energy storage in a solar thermal power plant using air as the heat transfer fluid. Applied Thermal Engineering 129:636–45. doi:10.1016/j.applthermaleng.2017.10.063.
  • Li, W., H. Guo, M. Zeng, and Q. Wang. 2019. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor. Energy Conversion and Management 198:111843. doi:10.1016/j.enconman.2019.111843.
  • Li, W., J. J. Klemeš, Q. Wang, and M. Zeng. 2022. Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives. Renewable and Sustainable Energy Reviews 154:111846. doi:10.1016/j.rser.2021.111846.
  • Lin, J., Q. Zhao, H. Huang, H. Mao, Y. Liu, and Y. Xiao. 2021. Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: A review. Solar Energy 214:149–78. doi:10.1016/j.solener.2020.11.055.
  • Liu, H., and K. Nagano. 2014. Numerical simulation of an open sorption thermal energy storage system using composite sorbents built into a honeycomb structure. International Journal of Heat & Mass Transfer 78:648–61. doi:10.1016/j.ijheatmasstransfer.2014.07.034.
  • Liu, H., K. Nagano, and J. Togawa. 2015. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system. Solar Energy 111:186–200. doi:10.1016/j.solener.2014.10.044.
  • Liu, H., W. Wang, and Y. Zhang. 2021. Performance gap between thermochemical energy storage systems based on salt hydrates and materials. Journal of Cleaner Production 313:127908. doi:10.1016/j.jclepro.2021.127908.
  • Lizana, J., R. Chacartegui, A. Barrios-Padura, and J. M. Valverde. 2017. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Applied Energy 203 (Supplement C):219–39. doi:10.1016/j.apenergy.2017.06.008.
  • Majumdar, P. 1998. Heat and mass transfer in composite desiccant pore structure for dehumidification. Solar Energy 97 (1):1–10. doi:10.1016/S0038-092X(97)00080-7.
  • Mehrabadi, A., and M. Farid. 2018. New salt hydrate composite for low-grade thermal energy storage. Energy 164:194–203. doi:10.1016/j.energy.2018.08.192.
  • Michel, B., N. Mazet, and P. Neveu. 2014. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance. Applied Energy 129:177–86. doi:10.1016/j.apenergy.2014.04.073.
  • Michel, B., P. Neveu, and N. Mazet. 2014. Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications. Energy 72 (Supplement C):702–16. doi:10.1016/j.energy.2014.05.097.
  • Nonnen, T., S. Beckert, K. Gleichmann, A. Brandt, B. Unger, H. Kerskes, B. Mette, S. Bonk, T. Badenhop, F. Salg, et al. 2016. A thermochemical long-term heat storage system based on a salt/zeolite composite. Chemical Engineering & Technology 39(12):2427–34. doi:10.1002/ceat.201600301.
  • Rui, J., Y. Luo, M. Wang, J. Peng, and X. She. 2022. Design and performance evaluation of an innovative salt hydrates-based reactor for thermochemical energy storage. Journal of Energy Storage 55:105799. doi:10.1016/j.est.2022.105799.
  • Scapino, L., H. A. Zondag, J. VanBael, J. Diriken, and C. C. M. Rindt. 2017. Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale. Applied Energy 190:920–48. doi:10.1016/j.apenergy.2016.12.148.
  • Simonova, I. A., A. Freni, G. Restuccia, and Y. I. Aristov. 2009. Water sorption on composite “silica modified by calcium nitrate”. Microporous and Mesoporous Materials 122 (1):223–28. doi:10.1016/j.micromeso.2009.02.034.
  • Suzuki, M. 1990. Adsorption engineering. Tokyo, Japan: Kodansya Ltd.
  • Tanashev, Y. Y., A. V. Krainov, and Y. I. Aristov. 2013. Thermal conductivity of composite sorbents “salt in porous matrix” for heat storage and transformation. Applied Thermal Engineering 61 (2):401–07. doi:10.1016/j.applthermaleng.2013.08.022.
  • Wang, W., Z. Tian, and Y. Ding. 2013. Investigation on the influencing factors of energy consumption and thermal comfort for a passive solar house with water thermal storage wall. Energy & Buildings 64:218–23. doi:10.1016/j.enbuild.2013.05.007.
  • Xu, C., Z. Yu, Y. Xie, Y. Ren, F. Ye, and X. Ju. 2018. Study of the hydration behavior of zeolite - MgSO4 composites for long-term heat storage. Applied Thermal Engineering 129:250–59. doi:10.1016/j.applthermaleng.2017.10.031.
  • Yamaguchi, S., and K. Saito. 2013. Numerical and experimental performance analysis of rotary desiccant wheels. International Journal of Heat & Mass Transfer 60:51–60. doi:10.1016/j.ijheatmasstransfer.2012.12.036.
  • Yan, T., and H. Zhang. 2022. A critical review of salt hydrates as thermochemical sorption heat storage materials: Thermophysical properties and reaction kinetics. Solar Energy 242:157–83. doi:10.1016/j.solener.2022.07.002.
  • Yu, N., R. Z. Wang, and L. W. Wang. 2013. Sorption thermal storage for solar energy. Progress in Energy & Combustion Science 39 (5):489–514. doi:10.1016/j.pecs.2013.05.004.
  • Zhang, Y., and R. Wang. 2020. Sorption thermal energy storage: Concept, process, applications and perspectives. Energy Storage Materials 27:352–69. doi:10.1016/j.ensm.2020.02.024.
  • Zhao, Q., J. Lin, H. Huang, Q. Wu, Y. Shen, and Y. Xiao. 2021. Optimization of thermochemical energy storage systems based on hydrated salts: A review. Energy & Buildings 244:111035. doi:10.1016/j.enbuild.2021.111035.
  • Zhu, D., H. Wu, and S. Wang. 2006. Experimental study on composite silica gel supported CaCl2 sorbent for low grade heat storage. International Journal of Thermal Sciences 45 (8):804–13. doi:10.1016/j.ijthermalsci.2005.10.009.
  • Zhu, J., C. Gao, F. Kong, K. Zhang, Z. Bai, and J. Guo. 2021. Low-priced stable SrCl2@SG composite sorbents for low-grade solar heat storage application in open sorption systems. Solar Energy Materials & Solar Cells 229:111118. doi:10.1016/j.solmat.2021.111118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.