65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance improvement of photovoltaic-thermal collector equipped with copper metal foam air channel

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 6021-6037 | Received 11 Jan 2024, Accepted 15 Apr 2024, Published online: 26 Apr 2024

References

  • Abdo, S., H. Saidani-Scott, M. A. Abdelrahman. 2021. Numerical study with eco-exergy analysis and sustainability assessment for a stand-alone nanofluid PV/T. Thermal Science and Engineering Progress 24:100931. doi:10.1016/j.tsep.2021.100931.
  • Ahmed, O. K., and Z. A. Mohammed. 2017. Influence of porous media on the performance of hybrid PV/Thermal collector. Journal of Renewable Energy 112:378–87. doi:10.1016/j.renene.2017.05.061.
  • Barone, G., A. Buonomano, C. Forzano, A. Palombo, and O. Panagopoulos. 2019. Photovoltaic thermal collectors: Experimental analysis and simulation model of an innovative low-cost water-based prototype. Energy 179:502–16. doi:10.1016/j.energy.2019.04.140.
  • Bashria, A., A. Yousef, N. Adam, K. Sopian, A. Zaharim, and M. Alghoul. 2007. Analysis of single and double passes V-grooves solar collector with and without porous media. The International Journal of Energy and Environmental 2 (1):109–14.
  • Cui, Y., J. Zhu, S. Zoras, and J. Zhang. 2021. Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid. Journal of Renewable Sustainable Energy Reviews 135:110254. doi:10.1016/j.rser.2020.110254.
  • Dhiman, P., N. Thakur, A. Kumar, and S. Singh. 2011. An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater. Journal of Applied Energy 88 (6):2157–67. doi:10.1016/j.apenergy.2010.12.033.
  • Fan, W., G. Kokogiannakis, and Z. Ma. 2018. A multi-objective design optimisation strategy for hybrid photovoltaic thermal collector (PVT)-solar air heater (SAH) systems with fins. Journal of Solar Energy 163:315–28. doi:10.1016/j.solener.2018.02.014.
  • Hazami, M., A. Riahi, F. Mehdaoui, O. Nouicer, and A. Farhat. 2016. Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions. Energy 107:78–94. doi:10.1016/j.energy.2016.03.134.
  • Hemmat Esfe, M., M. H. Kamyab, and M. Valadkhani. 2020. Application of nanofluids and fluids in photovoltaic thermal system: An updated review. Solar Energy 199:796–818. doi:10.1016/j.solener.2020.01.015.
  • Herrando, M., A. Ramos, I. Zabalza, and C. N. Markides. 2019. A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors. Applied Energy 235:1583–602. doi:10.1016/j.apenergy.2018.11.024.
  • Hossain, F., M. R. Karim, and A. A. Bhuiyan. 2022. A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems. Journal of Renewable Energy 188:114–31. doi:10.1016/j.renene.2022.01.116.
  • Jia, Y., F. Ran, C. Zhu, and G. Fang. 2020. Numerical analysis of photovoltaic-thermal collector using nanofluid as a coolant. Solar Energy 196:625–36. doi:10.1016/j.solener.2019.12.069.
  • Joshi, A., A. Tiwari, G. Tiwari, I. Dincer, and B. Reddy. 2009. Performance evaluation of a hybrid photovoltaic thermal (PV/T)(glass-to-glass) system. The International Journal of Thermal Sciences 48 (1):154–64. doi:10.1016/j.ijthermalsci.2008.05.001.
  • Kazemian, A., M. Hosseinzadeh, M. Sardarabadi, and M. Passandideh-Fard. 2018. Effect of glass cover and working fluid on the performance of photovoltaic thermal (PVT) system: An experimental study. Journal of Solar Energy 173:1002–10. doi:10.1016/j.solener.2018.07.051.
  • Khan, A. A., M. Danish, S. Rubaiee, and S. M. Yahya. 2022. Insight into the investigation of Fe3O4/SiO2 nanoparticles suspended aqueous nanofluids in hybrid photovoltaic/thermal system. Journal of Cleaner Engineering Technology 11:100572. doi:10.1016/j.clet.2022.100572.
  • Kiwan, S. M., and A. M. Khlefat. 2021. Thermal cooling of photovoltaic panels using porous material. Journal of Case Studies in Thermal Engineering 24:100837. doi:10.1016/j.csite.2020.100837.
  • Liu, Z., Y. Yao, and H. Wu. 2013. Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage. Journal of Applied Energy 112:1222–32. doi:10.1016/j.apenergy.2013.02.022.
  • Maadi, S. R., M. Khatibi, E. Ebrahimnia-Bajestan, and D. Wood (2019). A parametric study of a novel PV/T system model which includes the greenhouse effect. IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry, Santiago, Chile.
  • Mousavi, S., A. Kasaeian, M. B. Shafii, and M. H. Jahangir. 2018. Numerical investigation of the effects of a copper foam filled with phase change materials in a water-cooled photovoltaic/thermal system. Energy Conversion and Management 163:187–95. doi:10.1016/j.enconman.2018.02.039.
  • Nahar, A., M. Hasanuzzaman, and N. Rahim. 2017. Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Journal of Solar Energy 144:517–28. doi:10.1016/j.solener.2017.01.041.
  • Nazri, N. S., A. Fudholi, W. Mustafa, C. H. Yen, M. Mohammad, M. H. Ruslan, and K. Sopian. 2019. Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector. Journal of Renewable Sustainable Energy Reviews 111:132–44. doi:10.1016/j.rser.2019.03.024.
  • Ould-Lahoucine, C., H. Ramdani, and D. Zied. 2021. Energy and exergy performances of a TiO2-water nanofluid-based hybrid photovoltaic/thermal collector and a proposed new method to determine the optimal height of the rectangular cooling channel. Journal of Solar Energy 221:292–306. doi:10.1016/j.solener.2021.04.027.
  • Rahmanian, S., and A. Hamzavi. 2020. Effects of pump power on performance analysis of photovoltaic thermal system using CNT nanofluid. Journal of Solar Energy 201:787–97. doi:10.1016/j.solener.2020.03.061.
  • Rahmanian, S., H. Rahmanian-Koushkaki, P. Omidvar, and A. Shahsavar. 2021. Nanofluid-PCM heat sink for building integrated concentrated photovoltaic with thermal energy storage and recovery capability. Sustainable Energy Technologies and Assessments 46:101223. doi:10.1016/j.seta.2021.101223.
  • Ramdani, H., and C. Ould-Lahoucine. 2020. Study on the overall energy and exergy performances of a novel water-based hybrid photovoltaic-thermal solar collector. Journal of Energy Conversion Management 222:113238. doi:10.1016/j.enconman.2020.113238.
  • Said, Z., R. Saidur, N. A. Rahim, and M. A. Alim. 2014. Analyses of exergy efficiency and pumping power for a conventional flat plate solar collector using SWCNTs based nanofluid. Journal of Energy Buildings 78:1–9. doi:10.1016/j.enbuild.2014.03.061.
  • Salari, A., A. Taheri, A. Farzanehnia, M. Passandideh-Fard, and M. Sardarabadi. 2021. An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches. Journal of Cleaner Production 282:124318. doi:10.1016/j.jclepro.2020.124318.
  • Salman, A. H. A., K. H. Hilal, and S. A. Ghadhban. 2022. Enhancing performance of PV module using water flow through porous media. Journal of Case Studies in Thermal Engineering 34:102000. doi:10.1016/j.csite.2022.102000.
  • Sardarabadi, M., and M. Passandideh-Fard. 2016. Experimental and numerical study of metal-oxides/water nanofluids as coolant in photovoltaic thermal systems (PVT). Solar Energy Materials and Solar Cells 157:533–42. doi:10.1016/j.solmat.2016.07.008.
  • Shahad, H. A., M. H. Abbood, and A. A. Ali (2021). Investigating the impact of using nano-fluid as a cooling medium on photovoltaic/thermal panel system performance. 4th International Conference on Engineering Sciences, Kerbala, Iraq.
  • Sheikholeslami, M., S. A. Farshad, Z. Ebrahimpour, and Z. Said. 2021. Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: A review. Journal of Cleaner Production 293:126119. doi:10.1016/j.jclepro.2021.126119.
  • Sopian, K., M. Alghoul, E. M. Alfegi, M. Sulaiman, and E. Musa. 2009. Evaluation of thermal efficiency of double-pass solar collector with porous–nonporous media. Journal of Renewable Energy 34 (3):640–45. doi:10.1016/j.renene.2008.05.027.
  • Tong, Y., X. Chi, W. Kang, and H. Cho. 2020. Comparative investigation of efficiency sensitivity in a flat plate solar collector according to nanofluids. Journal of Applied Thermal Engineering 174:115346. doi:10.1016/j.applthermaleng.2020.115346.
  • Tonui, J. K., and Y. Tripanagnostopoulos. 2007. Air-cooled PV/T solar collectors with low cost performance improvements. Journal of Solar Energy 81 (4):498–511. doi:10.1016/j.solener.2006.08.002.
  • Tonui, J. K., and Y. Tripanagnostopoulos. 2008. Performance improvement of PV/T solar collectors with natural air flow operation. Journal of Solar Energy 82 (1):1–12. doi:10.1016/j.solener.2007.06.004.
  • Venkatesh, T., S. Manikandan, C. Selvam, and S. Harish. 2022. Performance enhancement of hybrid solar PV/T system with graphene based nanofluids. International Communications in Heat and Mass Transfer 130:105794. doi:10.1016/j.icheatmasstransfer.2021.105794.
  • Widyolar, B., L. Jiang, J. Brinkley, S. K. Hota, J. Ferry, G. Diaz, and R. Winston. 2020. Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics. Journal of Applied Energy 268:114894. doi:10.1016/j.apenergy.2020.114894.
  • Yang, X., P. Wei, X. Wang, and Y.-L. He. 2020. Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam. Journal of Applied Energy 268:115019. doi:10.1016/j.apenergy.2020.115019.
  • Yang, X., J. Yu, Z. Guo, L. Jin, and Y.-L. He. 2019. Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube. Applied Energy 239:142–56. doi:10.1016/j.apenergy.2019.01.075.
  • Yousef, B., and N. Adam. 2008. Performance analysis for flat plate collector with and without porous media. Journal of Journal of Energy in Southern Africa 19 (4):32–42. doi:10.17159/2413-3051/2008/v19i4a3336.
  • Zhang, P., Z. Meng, H. Zhu, Y. Wang, and S. Peng. 2017. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam. Journal of Applied Energy 185:1971–83. doi:10.1016/j.apenergy.2015.10.075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.