16
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the complex interplay of factors in convective heat transfer: a comprehensive parametric analysis in three-dimensional permeable cavities

, , &
Pages 6064-6080 | Received 22 Dec 2023, Accepted 17 Apr 2024, Published online: 26 Apr 2024

References

  • Abbas, F., H. M. Ali, T. R. Shah, H. Babar, M. M. Janjua, U. Sajjad, and M. Amer. 2020. Nanofluid: Potential evaluation in automotive radiator. Journal of molecular liquids 297:112014. doi:10.1016/j.molliq.2019.112014.
  • Aglawe, K. R., and R. K. Yadav, et S. B. Thool. 2021. Preparation, applications and challenges of nanofluids in electronic cooling: A systematic review. Materials Today: Proceedings 43:366–72. doi:10.1016/j.matpr.2020.11.679.
  • Aissani, A., R. Fares, and R. Hidki, et M. Adnane. 2023. Analyzing heat transfer variations at specific locations in a cave filled with porous media, emphasizing non-equilibrium conditions. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45(4):12711–36. doi:10.1080/15567036.2023.2275709.
  • Ali, M. M., and R. Akhter, et M. A. Alim. 2021. Hydromagnetic mixed convection in a triangular shed filled by nanofluid and equipped with rectangular heater and rotating cylinders. International Journal of Thermofluids 11:100105. doi:10.1016/j.ijft.2021.100105.
  • Ali, F. H., H. K. Hamzah, A. K. Hussein, and M. Y. Jabbar, et P. Talebizadehsardari. 2020. MHD mixed convection due to a rotating circular cylinder in a trapezoidal enclosure filled with a nanofluid saturated with a porous media. International Journal of Mechanical Sciences 181:105688. doi:10.1016/j.ijmecsci.2020.105688.
  • Al-Kouz, W., A. Abderrahmane, M. D. Shamshuddin, O. Younis, S. Mohammed, O. A. Bég, and D. Toghraie. 2021. Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the galerkin finite element method. The European Physical Journal Plus 136(11):1184. doi:10.1140/epjp/s13360-021-02192-3.
  • Alsabery, A. I., M. A. Ismael, A. J. Chamkha, and I. Hashim. 2018. Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. International Journal of Heat and Mass Transfer 119:939–61. doi:10.1016/j.ijheatmasstransfer.2017.11.136.
  • Arasteh, H., R. Mashayekhi, M. Ghaneifar, and D. Toghraie, et M. Afrand. 2020. Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels’ divergent sections. Journal of Thermal Analysis and Calorimetry 141(5):1669–85. doi:10.1007/s10973-019-08870-w.
  • Asadi, M., and A. Asadi, et S. Aberoumand. 2018. An experimental and theoretical investigation on the effects of adding hybrid nanoparticles on heat transfer efficiency and pumping power of an oil-based nanofluid as a coolant fluid. International Journal of Refrigeration 89:83–92. doi:10.1016/j.ijrefrig.2018.03.014.
  • Astanina, M. S., and I. Pop, et M. A. Sheremet. 2023. Natural convection of water-based nanofluid in a chamber with a solid body of periodic volumetric heat generation. Journal of Thermal Analysis and Calorimetry 148 (3):1011–24. doi:10.1007/s10973-022-11735-4.
  • Barnoon, P., D. Toghraie, and R. B. Dehkordi, et M. Afrand. 2019. Two phase natural convection and thermal radiation of Non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders. International Communications in Heat and Mass Transfer 108 (nov):104285. doi:10.1016/j.icheatmasstransfer.2019.104285.
  • Bhowmick, D., and P. R. Randive, et S. Pati. 2021. Implication of corrugation profile on thermo-hydraulic characteristics of Cu-water nanofluid flow through partially filled porous channel. International Communications in Heat and Mass Transfer 125:105329. doi:10.1016/j.icheatmasstransfer.2021.105329.
  • Biglarian, M., M. R. Gorji, and O. Pourmehran, et G. Domairry. 2017. H2O based different nanofluids with unsteady condition and an external magnetic field on permeable channel heat transfer. International Journal of Hydrogen Energy 42 (34):22005–14. doi:10.1016/j.ijhydene.2017.07.085.
  • Chamkha, A. J., and H. Al-Naser. 2002. Hydromagnetic double-diffusive convection in a rectangular enclosure with opposing temperature and concentration gradients. International Journal of Heat and Mass Transfer 45 (12):2465–83. doi:10.1016/S0017-9310(01)00344-1.
  • Choi, U. S., and J. A. Eastman. 1995. Enhancing thermal conductivity of fluids with nanoparticles. In Argonne National Lab.(ANL), Argonne, Vol. IL. United States.
  • Dadhich, M. et O. S. Prajapati. 2021. Investigation of heat transfer performance of alumina nanofluid flowing in the horizontal tube using fuzzy logic rules. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–17. doi:10.1080/15567036.2021.1901801.
  • El-Shorbagy, M. A., F. Eslami, M. Ibrahim, P. Barnoon, and W.-F. Xia, et D. Toghraie. 2021. Numerical investigation of mixed convection of nanofluid flow in a trapezoidal channel with different aspect ratios in the presence of porous medium. Case Studies in Thermal Engineering 25:100977. doi:10.1016/j.csite.2021.100977.
  • EndreBr, B. A. I., A. Abderrahmane, and S. E. Ahmed, et Z. A. S. Raizah. 2021. 3D magnetic buoyancy-driven flow of hybrid nanofluids confined wavy cubic enclosures including multi-layers and heated obstacle. International Communications in Heat and Mass Transfer 126:105431. doi:10.1016/j.icheatmasstransfer.2021.105431.
  • Ghalambaz, M., S. A. M. Mehryan, E. Izadpanahi, and A. J. Chamkha, et D. Wen. 2019. MHD natural convection of Cu–Al2O3 water hybrid nanofluids in a cavity equally divided into two parts by a vertical flexible partition membrane. Journal of Thermal Analysis and Calorimetry 138(2):1723–43. doi:10.1007/s10973-019-08258-w.
  • Ghali, D., F., Redouane, R., Abdelhak, A., Belhadj Mahammed, C., Djaoutsi Zineb, W., Jamshed, M. R., Eid, S. M., Eldin, A., Musa, and N. Ain Azeany Mohd Nasir. 2022. Mathematical entropy analysis of natural convection of MWCNT—Fe3O4/Water hybrid nanofluid with parallel magnetic field via galerkin finite element process. Symmetry 14(11):2312.
  • Ghasemi, K., and M. Siavashi. 2017. nov. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. Journal of Magnetism and Magnetic Materials 442:474–90. doi:10.1016/j.jmmm.2017.07.028.
  • Hemmat Esfe, M., A. A. Abbasian Arani, M. Rezaie, and W.-M. Yan, et A. Karimipour. 2015. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. International Communications in Heat and Mass Transfer 66:189–95. doi:10.1016/j.icheatmasstransfer.2015.06.003.
  • Hidki, R., L. El Moutaouakil, M. Boukendil, Z. Charqui, and Z. Zrikem, et A. Abdelbaki. 2023. Impact of Cu,Al2O3-water hybrid nanofluid on natural convection inside a square cavity with two heat-generating bodies. Materials Today: Proceedings 72:3749–56. doi:10.1016/j.matpr.2022.09.292.
  • Hussain, S., and M. Jamal, et S. E. Ahmed. 2019. Hydrodynamic forces and heat transfer of nanofluid forced convection flow around a rotating cylinder using finite element method: The impact of nanoparticles. International Communications in Heat and Mass Transfer 108:104310. doi:10.1016/j.icheatmasstransfer.2019.104310.
  • Hussein, A. K. 2016. Applications of nanotechnology to improve the performance of solar collectors–recent advances and overview. Renewable and Sustainable Energy Reviews 62:767–92. doi:10.1016/j.rser.2016.04.050.
  • Ibrahim, M., T. Saeed, F. R. Bani, S. N. Sedeh, and Y.-M. Chu, et D. Toghraie. 2021. Two-phase analysis of heat transfer and entropy generation of water-based magnetite nanofluid flow in a circular microtube with twisted porous blocks under a uniform magnetic field. Powder Technology 384:522–41. doi:10.1016/j.powtec.2021.01.077.
  • Jiang, X., M. Hatami, A. Abderrahmane, O. Younis, and B. M. Makhdoum, et K. Guedri. 2023. Mixed convection heat transfer and entropy generation of MHD hybrid nanofluid in a cubic porous cavity with wavy wall and rotating cylinders. Applied Thermal Engineering 226:120302. doi:10.1016/j.applthermaleng.2023.120302.
  • Kareem, A. K. et S. Gao. 2017. Mixed convection heat transfer of turbulent flow in a three-dimensional lid-driven cavity with a rotating cylinder. International Journal of Heat and Mass Transfer 112:185–200. doi:10.1016/j.ijheatmasstransfer.2017.04.118.
  • Kazzaz, M., C. Habchi, K. Ghali, N. Ghaddar, and S. Alotaibi, et W. Chakroun. 2017. Micro-particle indoor resuspension under periodic airflows: A numerical-analytical study and experimentations. Building & Environment 123:299–314. doi:10.1016/j.buildenv.2017.07.011.
  • Khfagi, A. M., G. Hunt, and M. C. Paul, et N. Karimi. 2023. Time-dependent analysis of heat transfer enhancement and entropy generation of hybrid nanofluids in a tube with a solid and elliptical‑cut twisted tape insert with non-uniform heat flux. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45(4):11315–40. doi:10.1080/15567036.2023.2256691.
  • Kolsi, L., F. Selimefendigil, H. F. Öztop, and W. Hassen, et W. Aich. 2021. Impacts of double rotating cylinders on the forced convection of hybrid nanofluid in a bifurcating channel with partly porous layers. Case Studies in Thermal Engineering 26:101020. doi:10.1016/j.csite.2021.101020.
  • Liang, T., J.-R. Hou, M. Qu, and J.-X. Xi, et I. Raj. 2022. Application of nanomaterial for enhanced oil recovery. Petroleum Science 19 (2):882–99. doi:10.1016/j.petsci.2021.11.011.
  • Liu, X., D. Toghraie, M. Hekmatifar, O. A. Akbari, and A. Karimipour, et M. Afrand. 2020. Numerical investigation of nanofluid laminar forced convection heat transfer between two horizontal concentric cylinders in the presence of porous medium. Journal of Thermal Analysis and Calorimetry 141(5):2095–108. doi:10.1007/s10973-020-09406-3.
  • Lotfi, C., F. Redouane, C. D. Zineb, W. Jamshed, M. R. Eid, R. W. Ibrahim, S. S. P. Mohamed Isa, H. Alqahtani, and S. M. Hussain. 2023. Thermal energy analysis of multi-walled carbon nanotubes-fe 3 O 4/H 2 O flow over non-uniformed surface with Darcy–forchheimer model. Energy & Environment 0958305X231183689. doi:10.1177/0958305X231183689.
  • Mehrjardi, S. A. A., A. Khademi, and S. Ushak, et S. Alotaibi. 2022. Melting process of various phase change materials in presence of auxiliary fluid with sinusoidal wall temperature. Journal of Energy Storage 52:104779. doi:10.1016/j.est.2022.104779.
  • Mirzaee, H., R. Rafee, and S. Rashidi, et G. Ahmadi. 2020. Evaluation of different numerical models for prediction of pressure drop in laminar nanofluid flows. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 1–19. doi:10.1080/15567036.2020.1810178.
  • Naeimi, J., M. Biglari, and S. Zirak, et I. J. Gavzan. 2024. Enhancing conventional steam power plant performance through feed water heating repowering. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 46 (1):18–34. doi:10.1080/15567036.2023.2277364.
  • Siavashi, M., and M. V. Bozorg, et M. H. Toosi. 2021. A numerical analysis of the effects of nanofluid and porous media utilization on the performance of parabolic trough solar collectors. Sustainable Energy Technologies and Assessments 45:101179. doi:10.1016/j.seta.2021.101179.
  • Singh, J., and M. K. Mittal, et V. Khullar. 2022. Nanofluid-based wick-type integrated solar still for improved diurnal and nocturnal distillate production. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (4):10094–115. doi:10.1080/15567036.2022.2143952.
  • Wang, Y., C. Qi, Z. Ding, and J. Tu, et R. Zhao. 2021. Numerical simulation of flow and heat transfer characteristics of nanofluids in built-in porous twisted tape tube. Powder Technology 392:570–86. doi:10.1016/j.powtec.2021.07.066.
  • Woods, L. C. 1975. The thermodynamics of fluid systems. Oxford.
  • Zari, I., and A. Shafiq, et T. S. Khan. 2021. Simulation study of Marangoni convective flow of kerosene oil based nanofluid driven by a porous surface with suction and injection. International Communications in Heat and Mass Transfer 127:105493. doi:10.1016/j.icheatmasstransfer.2021.105493.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.