12
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of recycled polyethylene catalyst for Mediterranean pine seed shell biomass pyrolysis on hydrogen and methane production

&
Pages 6555-6565 | Received 25 Sep 2023, Accepted 26 Apr 2024, Published online: 12 May 2024

References

  • Acevedo-Paez, J. C., E. Arenas-Castiblanco, F. Posso, E. Alarcón, A. L. Villa, H. Jahromi, and S. Adhikari. 2023. Effect of calcium and potassium on activity of mordenite-supported nickel catalyst for hydrogen production from biomass gasification. International Journal of Hydrogen Energy 52:1248–62. doi:10.1016/j.ijhydene.2023.07.123
  • Al-Fatesh, A. S., N. Y. A. Al-Garadi, A. I. Osman, F. S. Al-Mubaddel, A. A. Ibrahim, W. U. Khan, Y. M. Alanazi, M. M. Alrashed, and O. Y. Alothman. 2023. From plastic waste pyrolysis to fuel: Impact of process parameters and material selection on hydrogen production. Fuel 344:128107. doi:10.1016/j.fuel.2023.128107
  • Anşin, R., and Z. C. Özkan. 1997. Tohumlu bitkiler (spermatophyta) odunsu taksonlar. second ed. Turkey: KTU.
  • Brandt, A., J. Gräsvik, J. P. Hallett, and T. Welton. 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry 15 (3):550–83. doi:10.1039/c2gc36364j
  • Chen, Y., Z. Wang, G. Chen, Q. Wang, T. Sun, M. Zhang, Z. Du, M. Wu, S. Guo, T. Lei, et al. 2024. Synergistic effects and products yield analyses based on co-pyrolysis of poplar tree and rape stalks with polyethylene terephthalate and polypropylene. Journal of the Energy Institute 112:101461. doi:10.1016/j.joei.2023.101461
  • Chiodo, V., G. Zafarana, S. Maisano, S. Freni, and F. Urbani. 2016. Pyrolysis of different biomass: Direct comparison among Posidonia Oceanica, Lacustrine Alga and White-Pine. Fuel 164:220–27. doi:10.1016/j.fuel.2015.09.093
  • Chu, Z., Y. Li, C. Zhang, Y. Fang, and J. Zhao. 2023. A review on resource utilization of oil sludge based on pyrolysis and gasification. Journal of Environmental Chemical Engineering 11:109692. doi:10.1016/j.jece.2023.109692
  • Clemente-Castro, S., A. Palma, M. Ruiz-Montoya, I. Giraldez, and M. J. Diaz. 2023. Comparative study of the combustion, pyrolysis and gasification processes of Leucaena leucocephala: Kinetics and gases obtained, Heliyon. Heliyon 9 (7):e17943. doi:10.1016/j.fuel.2011.09.054
  • Department for Energy Security and Net Zero and Department for Business, Energy & Industrial Strategy. Greenhouse gas reporting: conversion factors 2020. Last Modified July 17, 2020Accessed December 05, 2023. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2020
  • Fu, Y., Y. Yu, J. Qiang, Y. Deng, S. Ren, H. Elshareef, H. Li, R. Dong, and Y. Zhou. 2024. Experimental study on the regulation of NOX in co-pyrolysis of maize straw and woody biomass. Fuel 357:129481. doi:10.1016/j.fuel.2023.129481
  • Hepbasli, A., and Z. Alsuhaibani. 2014. Estimating and comparing the exergetic solar radiation values of various climate regions for solar energy utilization, energy sources, part a recover. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 36 (7):764–73. doi:10.1080/15567036.2010.545807
  • Holman, J. P. 2012. Experimental methods for engineers. 8th ed. NY: McGraw-Hill.
  • Li, J., K. R. G. Burra, Z. Wang, X. Liu, and A. K. Gupta. 2021. Co-gasification of high-density polyethylene and pretreated pine wood, Appl. Energy 285:116472. doi:10.1016/j.apenergy.2021.116472
  • Li, A., H. Han, K. Zheng, M. Zhu, K. Xu, J. Xu, L. Jiang, Y. Wang, S. Su, S. Hu, et al. 2024. Sludge pyrolysis integrated biomass gasification to promote syngas: Comparison of different biomass. Fuel 908:168278. doi:10.1016/j.scitotenv.2023.168278
  • Liu, Y., T. Chen, B. Gao, R. Meng, P. Zhou, G. Chen, Y. Zhan, W. Lu, and H. Wang. 2021. Comparison between hydrogen-rich biogas production from conventional pyrolysis and microwave pyrolysis of sewage sludge: Is microwave pyrolysis always better in the whole temperature range? International Journal of Hydrogen Energy 46 (45):23322–33. doi:10.1016/j.ijhydene.2020.05.165
  • Li, P., B. Wang, J. Hu, Y. Zhang, W. Chen, C. Chang, and S. Pang. 2023. Research on the kinetics of catalyst coke formation during biomass catalytic pyrolysis: A mini review. Journal of the Energy Institute 110 (2023):101315. doi:10.1016/j.joei.2023.101315
  • Mu, L., R. Wang, P. Xie, Y. Li, X. Huang, H. Yin, and M. Dong. 2023. Comparative investigation on the pyrolysis of crop, woody, and herbaceous biomass: Pyrolytic products, structural characteristics, and CO2 gasification. Fuel 335:126940. doi:10.1016/j.fuel.2022.126940
  • Oni, B. A., S. E. Sanni, A. J. Ibegbu, O. S. Tomomewo, and H. N. Dike. 2023. Pyrolytic-gasification of biomass and plastic accompanied with catalytic sequential tar reformation into hydrogen-rich gas. Journal of the Energy Institute 109:101287. doi:10.1016/j.joei.2023.101287
  • Ravi, R., O. Douadi, M. Ezhilchandran, M. Faqir, E. Essadiqi, M. Belkasmi, and S. K. Vijayalakshmi. 2023. A practical approach-based technical review on effective utilization of exhaust waste heat from combustion engines, energy sources, part a recover. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (4):10010–33. doi:10.1080/15567036.2023.2242321
  • Robinson, O. J., A. Tewkesbury, S. Kemp, and I. D. Williams. 2018. Towards a universal carbon footprint standard: A case study of carbon management at universities. Journal Cleaner Production 172:4435–55. doi:10.1016/j.jclepro.2017.02.147
  • Shafizadeh, A., H. Rastegari, H. Shahbeik, H. Mobli, J. Pan, W. Peng, G. Li, M. Tabatabaei, and M. Aghbashlo. 2023. A critical review of the use of nanomaterials in the biomass pyrolysis process. Journal Cleaner Production 400 (2023):136705. doi:10.1016/j.jclepro.2023.136705
  • Soomro, A., S. Chen, S. Ma, Z. Sun, C. Xu, and W. Xiang. 2020. Promoting effect of ZrO2/CeO2 addition on Fe/CaO catalyst for hydrogen gas production in the gasification process. Biomass & bioenergy 142:105712. doi:10.1016/j.biombioe.2020.105712
  • Tang, H., Q. Dai, Y. Cao, J. Li, X. Wei, K. Jibran, and S. Wang. 2023. Biomass and bioenergy production of jet fuel range hydrocarbons using a magnetic Ni – Fe/SAPO-11 catalyst for solvent-free hydrodeoxygenation of jatropha oil. Biomass and Bioenergy 177:106927. doi:10.1016/j.biombioe.2023.106927
  • Tian, Y., D. He, Y. Zeng, L. Hu, J. Du, Z. Luo, W. Ma, and Z. Zhang. 2023. Experimental research on hydrogen-rich syngas yield by catalytic biomass air-gasification over Ni/olivine as in-situ tar destruction catalyst. Journal of the Energy Institute 108 (2023):101263. doi:10.1016/j.joei.2023.101263
  • Wu, Q., W. Huang, A. Dai, L. Ke, L. Zhang, Q. Zhang, X. Cui, L. Fan, C. Xu, K. Cobb, et al. 2024. Two-step fast pyrolysis of torrefied corncobs and waste cooking oil under different atmosphere for hydrocarbons production. Energy 286 (2024):129535. doi:10.1016/j.energy.2023.129535
  • Yue, W., X. Ma, Z. Yu, H. Liu, M. Li, and X. Lu. 2023. Ni-CaO bifunctional catalyst for biomass catalytic pyrolysis to produce hydrogen-rich gas. Journal of Analytical and Applied Pyrolysis 169:105872. doi:10.1016/j.jaap.2023.105872
  • Yu, Y., X. Li, S. Shao, P. Zhang, and J. Jiang. 2024. Hydrogen production via biomass fast pyrolysis and in-line steam reforming using carbon reduced cathode material of spent LiCoO2 batteries as catalyst. Fuel 357:129659. doi:10.1016/j.fuel.2023.129659
  • Zhang, J., A. Tahmasebi, J. Esohe, and J. Yu. 2018. Journal of analytical and applied pyrolysis direct synthesis of hollow carbon nano fibers on bio-char during microwave pyrolysis of pine nut shell. Journal of Analytical and Applied Pyrolysis 130:142–48. doi:10.1016/j.jaap.2018.01.016
  • Zhou, L., Y. Wang, Q. Hung, and J. Cai. 2006. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Processing Technology 335 (11):963–69. doi:10.1016/j.fuproc.2006.07.002
  • Zuleta, A., A. Weisstaub, S. Giacomino, L. Dyner, V. Loewe, R. Del Rio, and M. Lutz. 2018. An ancient crop revisited: Chemical composition of Mediterranean pine nuts grown in six countries. Italian Journal of Food Science 30:170–83.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.