27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect on combustion performance and emission behavior of diesel engine fueled with hybrid biodiesel produced from a novel ternary oil mixture incorporated with nano additive

ORCID Icon, &
Pages 6566-6585 | Received 20 Feb 2024, Accepted 29 Apr 2024, Published online: 12 May 2024

References

  • Ahmad, R. M., M. Zafar, A. Bokhari, M. S. Akhtar, R. A. Alshgari, A. M. Karami, S. Asif, and S. Asif. 2023. Membrane reactor for production of biodiesel from nonedible seed oil of trachyspermum ammi using heterogenous green nanocatalyst of manganese oxide. Chemosphere 322:138078. doi:10.1016/j.chemosphere.2023.138078
  • Auti, S. M., and W. S. Rathod. 2021. Effect of hybrid blends of raw tyre pyrolysis oil, Karanja biodiesel and diesel fuel on single cylinder four stokes diesel engine. Energy Reports 7:2214–20. doi:10.1016/j.egyr.2021.04.007
  • Balan, K. N., U. Yashvanth, P. Booma Devi, T. Arvind, H. Nelson, and Y. Devarajan. 2019. Investigation on emission characteristics of alcohol biodiesel blended diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 41 (15):1879–89. doi:10.1080/15567036.2018.1549166
  • Brahma, S., B. Nath, B. Basumatary, B. Das, P. Saikia, K. Patir, and S. Basumatary. 2022. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances 10:100284. doi:10.1016/j.ceja.2022.100284
  • Buyukkaya, E. 2010a. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89 (10):3099–105. doi:10.1016/j.fuel.2010.05.034
  • Buyukkaya, E. 2010b. Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 89 (10):3099–105. doi:10.1016/j.fuel.2010.05.034
  • Chauhan, B. S., N. Kumar, and H. Muk Cho. 2012. A study on the performance and emission of a diesel engine fueled with Jatropha Biodiesel Oil and its blends. Energy 37 (1):616–22. doi:10.1016/j.energy.2011.10.043
  • Elkelawy, M., H. Alm-Eldin Bastawissi, K. Khodary Esmaeil, A. Mohamed Radwan, H. Panchal, K. Kumar Sadasivuni, D. Ponnamma, and R. Walvekar. 2019. Experimental studies on the biodiesel production parameters optimization of sunflower and soybean oil mixture and DI engine combustion, performance, and emission analysis fueled with Diesel/Biodiesel blends. Fuel 255:115791. doi:10.1016/j.fuel.2019.115791
  • El-Seesy, A. I., H. Hassan, and S. Ookawara. 2019. Influence of adding multiwalled carbon nanotubes to waste cooking oil biodiesel on the performance and emission characteristics of a diesel engine: An experimental investigation. International Journal of Green Energy 16 (12):901–16. doi:10.1080/15435075.2019.1642895
  • Gad, M. S., M. K. Bahaa, and I. Anjum Badruddin. 2021. Improving the diesel engine performance, emissions and combustion characteristics using biodiesel with carbon nanomaterials. Fuel 288:119665. doi:10.1016/j.fuel.2020.119665
  • Gharehghani, A., S. Asiaei, E. Khalife, B. Najafi, and M. Tabatabaei. 2019. Simultaneous reduction of CO and NOx emissions as well as fuel consumption by using water and nano particles in diesel–biodiesel blend. Journal of Cleaner Production 210:1164–70. doi:10.1016/j.jclepro.2018.10.338
  • Giwa, S., O. Adekomaya, and C. Nwaokocha. 2016. Potential hybrid feedstock for biodiesel production in the Tropics. Frontiers in Energy 10 (3):329–36. doi:10.1007/s11708-016-0408-8
  • Harisha, P., B. N. Anil Kumar, S. R. Tilak, and C. Ganesh. 2021. Production and optimization of biodiesel from composite pongamia oil, animal fat oil and waste cooking oil using RSM. Materials Today: Proceedings 47 (xxxx):4901–05. doi:10.1016/j.matpr.2021.06.322
  • Hoseini, S. S., G. Najafi, B. Ghobadian, M. T. Ebadi, R. Mamat, and T. Yusaf. 2020. Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends. Renewable Energy 145:458–65. doi:10.1016/j.renene.2019.06.006
  • Hoseini, S. S., G. Najafi, B. Ghobadian, R. Mamat, M. T. Ebadi, and T. Yusaf. 2018. Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus Altissima biodiesel. Renewable Energy 125:283–94. doi:10.1016/j.renene.2018.02.104
  • Jamil, F. 2023. A review on biodiesel production, analysis, and emission characteristics from non‐edible feedstocks. Chemistry Select 8 (31). doi: 10.1002/slct.202300800
  • Jassinnee, M., H. H. M. Hwai Chyuan Ong, A. S. Silitonga, S. Kusumo, F. Dharma, A. H. Sebayang, M. Y. Cheah, C.-T. Wang, and C.-T. Wang. 2018. Physicochemical property enhancement of biodiesel synthesis from hybrid feedstocks of waste cooking vegetable oil and beauty leaf oil through optimized alkaline-catalysed transesterification. Waste Management 80:435–49. doi:10.1016/j.wasman.2018.09.005
  • Kegl, T., A. Kovač Kralj, B. Kegl, and M. Kegl. 2021. Nanomaterials as fuel additives in diesel engines: A review of Current state, opportunities, and challenges. Progress in Energy and Combustion Science 83:100897. doi:10.1016/j.pecs.2020.100897
  • Kukana, R., and O. Prakash Jakhar. 2022. Performance, combustion and emission characteristics of a diesel engine using composite biodiesel from waste cooking oil - hibiscus cannabinus oil. Journal of Cleaner Production 372:133503. doi:10.1016/j.jclepro.2022.133503
  • Kumar, D., T. Das, B. S. Giri, R. R. Eldon, and B. Verma. 2019. Biodiesel production from hybrid non-edible oil using bio-support beads immobilized with lipase from Pseudomonas Cepacia. Fuel 255 (June):115801. doi:10.1016/j.fuel.2019.115801
  • Kumar, S., M. Kumar Singhal, and M. Pal Sharma. 2021. Utilization of mixed oils for biodiesel preparation: A review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–34. doi:10.1080/15567036.2021.1884771
  • Kumar, A., and S. Sinha. 2022. Performance of multiwalled carbon nanotube doped fired clay bricks. Journal of Materials in Civil Engineering 34 (12). doi: 10.1061/(ASCE)MT.1943-5533.0004511
  • Kusumo, F., T. M. I. Mahlia, A. H. Shamsuddin, A. R. Ahmad, A. S. Silitonga, S. Dharma, M. Mofijur, F. Ideris, H. C. Ong, R. Sebayang, et al. 2022. Optimisation of biodiesel production from mixed sterculia foetida and rice bran oil. International Journal of Ambient Energy 43 (1):4380–90. doi:10.1080/01430750.2021.1888802
  • Logesh, K., S. Baskar, B. Y. Siddarth, K. Arun Sherwin, and P. Naresh. 2019. Multi-walled carbon nanotube mixed with isopropyl alcohol nano fluid for heat transfer applications. Materials Today: Proceedings 18:4690–94. doi:10.1016/j.matpr.2019.07.454
  • Mangesh, V. L., S. Padmanabhan, P. Tamizhdurai, S. Narayanan, and A. Ramesh. 2020. Combustion and emission analysis of hydrogenated waste polypropylene pyrolysis oil blended with diesel. Journal of Hazardous Materials 386:121453. doi:10.1016/j.jhazmat.2019.121453
  • Manigandan, S., P. Gunasekar, T. R. Praveenkumar, J. S. M. Sabir, T. Mathimani, A. Pugazhendhi, and K. Brindhadevi. 2021. Performance, noise and emission characteristics of DI engine using canola and moringa oleifera biodiesel blends using soluble multiwalled carbon nanotubes. Fuel 289:119829. doi:10.1016/j.fuel.2020.119829
  • Masera, K., and A. Kalam Hossain. 2023. Advancement of biodiesel fuel quality and NOx emission control techniques. Renewable and Sustainable Energy Reviews 178:113235. doi:10.1016/j.rser.2023.113235
  • Mishra, P. C., and S. Kumar Nayak. 2018. Pre-and post-mixed hybrid biodiesel blends as alternative energy fuels-an experimental case study on turbo-charged direct injection diesel engine. Energy 160:910–23. doi:10.1016/j.energy.2018.07.071
  • Nguyen, V. N., D. Balasubramanian, A. Rajarajan, I. P. Venugopal, C. Dineshkumar, R. Ravikumar, D. T. N. Le, D. N. Cao, J. F. Josephin, A. Chinnathambi, et al. 2024. Engine behavior analysis on a conventional diesel engine combustion mode powered by low viscous cedarwood oil/waste cooking oil biodiesel/diesel fuel mixture – an experimental study. Process Safety and Environmental Protection 184:560–78. doi:10.1016/j.psep.2024.02.002
  • Ninawe, G., and M. Tariq. 2021. Influence of carbon nanotubes as additive in diesel-biodiesel blends in CI engine - an experimental investigation. International Journal of Sustainable Engineering 14 (5):1110–21. doi:10.1080/19397038.2020.1790059
  • Ooi, J. B., H. Mohamed Ismail, V. Swamy, X. Wang, A. Kumar Swain, and J. Raj Rajanren. 2016. Graphite oxide nanoparticle as a diesel fuel additive for cleaner emissions and lower fuel consumption. Energy & Fuels acs.energyfuels.5b02162. doi:10.1021/acs.energyfuels.5b02162
  • Ooi, J. B., J. Raj Rajanren, H. Mohamed Ismail, V. Swamy, and X. Wang. 2017. Improving combustion characteristics of diesel and biodiesel droplets by graphite oxide addition for diesel engine applications. International Journal of Energy Research 41 (14):2258–67. doi:10.1002/er.3787
  • Opuz, M., A. Uyumaz, M. Babagiray, H. Solmaz, A. Calam, and F. Aksoy. 2023. The effects of metallic fuel addition into canola oil biodiesel on combustion, engine performance and exhaust emissions. Journal of the Energy Institute 111:101390. doi:10.1016/j.joei.2023.101390
  • Özener, O., L. Yüksek, A. Tekin Ergenç, and M. Özkan. 2014. Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 115:875–83. doi:10.1016/j.fuel.2012.10.081
  • Ozsezen, A. N., and M. Canakci. 2011. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters. Energy Conversion and Management 52 (1):108–16. doi:10.1016/j.enconman.2010.06.049
  • Prabhu, A., and M. Venkata Ramanan. 2021. A comprehensive review of water injection and emulsion technology for biodiesel-fuelled CI engine. International Journal of Ambient Energy 42 (6):720–24. doi:10.1080/01430750.2018.1501757
  • Ramakrishnan, G., P. Krishnan, S. Rathinam, T. R, and Y. Devarajan. 2019. Role of nano-additive blended biodiesel on emission characteristics of the research diesel engine. International Journal of Green Energy 16 (6):435–41. doi:10.1080/15435075.2019.1577742
  • Safaripour, M., M. Saidi, and A. Jahangiri. 2023. Application of samarium doped lanthanum nickel oxide perovskite nanocatalyst for biodiesel production. Energy Conversion and Management 296:117667. doi:10.1016/j.enconman.2023.117667
  • Saraee, H. S., H. Taghavifar, and S. Jafarmadar. 2017. Experimental and numerical consideration of the effect of CeO2 nanoparticles on diesel engine performance and exhaust emission with the aid of artificial neural network. Applied Thermal Engineering 113:663–72. doi:10.1016/j.applthermaleng.2016.11.044
  • Saydut, A., S. Erdogan, A. Beycar Kafadar, C. Kaya, F. Aydin, and C. Hamamci. 2016. Process optimization for production of biodiesel from hazelnut oil, sunflower oil and their hybrid feedstock. Fuel 183:512–17. doi:10.1016/j.fuel.2016.06.114
  • Sharma, Y. C., and B. Singh. 2010. A hybrid feedstock for a very efficient preparation of biodiesel. Fuel Processing Technology 91 (10):1267–73. doi:10.1016/j.fuproc.2010.04.008
  • Singh, S. K., A. Chauhan, and B. Sarkar. 2023. Sustainable biodiesel supply chain model based on waste animal fat with subsidy and advertisement. Journal of Cleaner Production 382:134806. doi:10.1016/j.jclepro.2022.134806
  • Singh, B., A. Kumar Srivastava, and O. Prakash. 2024. Hybrid biodiesel production from optimised novel ternary oil mixture (simplex lattice mixture design) using heterogeneous River shell catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 46 (1):2973–92. doi:10.1080/15567036.2024.2310744
  • Srinivasa Rao, M., and R. B. Anand. 2016. Performance and emission characteristics improvement studies on a biodiesel fuelled DICI engine using water and AlO(OH) nanoparticles. Applied Thermal Engineering 98:636–45. doi:10.1016/j.applthermaleng.2015.12.090
  • Stone, R. 1992. Introduction to internal combustion engines. 2nd ed. London: The Macmhillan press LTD.
  • Sudalaimuthu, G., S. Rathinam, D. Babu Munuswamy, A. Thirugnanasambandam, and Y. Devarajan. 2020. Testing and evaluation of performance and emissions characteristics of water- biodiesel aspirated research engine. Journal of Testing and Evaluation 48 (5):20180306. doi:10.1520/JTE20180306
  • Swarna, S., M. T. Swamy, T. R. Divakara, K. N. Krishnamurthy, and S. Shashidhar. 2022. Experimental assessment of ternary fuel blends of diesel. In Hybrid biodiesel and alcohol in naturally aspirated CI engine, ed M. Abbaspour, Vol. 19. Springer Berlin Heidelberg.
  • Tamilvanan, A., K. Balamurugan, and M. Vijayakumar. 2019. Effects of nano-copper additive on performance, combustion and emission characteristics of calophyllum inophyllum biodiesel in CI engine. Journal of Thermal Analysis and Calorimetry 136 (1):317–30. doi:10.1007/s10973-018-7743-4
  • Tan, D., Y. Wu, J. Lv, J. Li, X. Ou, Y. Meng, G. Lan, Y. Chen, and Z. Zhang. 2023. Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology. Energy 263:125869. doi:10.1016/j.energy.2022.125869
  • Viswanathan, V. K., A. Razak Kaladgi, P. Thomai, Ü. Ağbulut, M. Alwetaishi, Z. Said, S. Shaik, and A. Afzal. 2022. Hybrid optimization and modelling of CI engine performance and emission characteristics of novel hybrid biodiesel blends. Renewable Energy 198 (August):549–67. doi:10.1016/j.renene.2022.08.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.