30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Renewable cold plasma exposed activated carbon-derived eucalyptus leaves (EL) as electrode in fabricating low-cost energy storage devices

& ORCID Icon
Pages 6743-6760 | Received 14 Aug 2023, Accepted 26 Apr 2024, Published online: 19 May 2024

References

  • Adhamash, E., R. Pathak, K. Chen, M. T. Rahman, A. El-Magrous, Z. Gu, S. Lu, Q. Qiao, and Y. Zhou. 2020. High-energy plasma activation of renewable carbon for enhanced capacitive performance of supercapacitor electrode. Electrochimica acta 362:137148. doi:10.1016/j.electacta.2020.137148
  • Arriagada, R., R. García, M. Molina-Sabio, and F. Rodríguez-Reinoso. 1997. Effect of steam activation on the porosity and chemical nature of activated carbons from eucalyptus globulus and peach stones. Microporous Mater 8 (3–4):123–30. doi:10.1016/S0927-6513(96)00078-8
  • Atika, and R. K. Dutta, 2021. Oxygen-rich porous activated carbon from eucalyptus wood as an efficient supercapacitor electrode. Energy Technology 9 (9):1–12. doi:10.1002/ente.202100463
  • Bai, C., F. Ning, S. Pan, H. Wang, Y. Li, M. Shen, and X. Zhou. 2022. Plasma treated carbon paper electrode greatly improves the performance of iron-hydrogen battery for low-cost energy storage. Chinese Chemical Letters 33 (2):1095–99. doi:10.1016/j.cclet.2021.07.008
  • Balasubramanian, V., T. Daniel, J. Henry, G. Sivakumar, and K. Mohanraj. 2020. Electrochemical performances of activated carbon prepared using eggshell waste. SN Applied Sciences 2 (1). doi: 10.1007/s42452-019-1921-2
  • Bejjanki, D., P. Banothu, V. B. Kumar, and P. S. Kumar. 2023. Biomass-derived N-Doped activated carbon from eucalyptus leaves as an efficient supercapacitor electrode material. C 9 (1):24. doi:10.3390/c9010024
  • Bello, G., R. García, R. Arriagada, A. Sepúlveda-Escribano, and F. Rodríguez-Reinoso. 2002. Carbon molecular sieves from eucalyptus globulus charcoal. Microporous and Mesoporous Materials 56 (2):139–45. doi:10.1016/S1387-1811(02)00465-1
  • Boopathiraja, R., S. Vadivel, M. Parthibavarman, S. Prabhu, and R. Ramesh. 2021. Effect of polypyrrole incorporated sun flower like Mn 2 P 2 O 7 with lab waste tissue paper derived activated carbon for asymmetric supercapacitor applications. Surfaces and Interfaces 26 (July):101409. doi:10.1016/j.surfin.2021.101409
  • Chand, A., P. Joshi, and A. Joshi. 2021. Biomass derived carbon for supercapacitor applications: Review. Journal of Energy Storage 39 (April):102646. doi:10.1016/j.est.2021.102646
  • Chang, W. M., C. C. Wang, and C. Y. Chen. 2015. Plasma treatment of carbon nanotubes applied to improve the high performance of carbon nanofiber supercapacitors. Electrochimica acta 186:530–41. doi:10.1016/j.electacta.2015.11.038
  • Chen, C., S. Mi, D. Lao, P. Shi, Z. Tong, Z. Li, and H. Hu. 2019. Single-step synthesis of eucalyptus sawdust magnetic activated carbon and its adsorption behavior for methylene blue. RSC Advances 9 (39):22248–62. doi:10.1039/c9ra03490k
  • Chen, C., P. Zhao, Y. Huang, Z. Tong, and Z. Li. 2013. Preparation and characterization of activated carbon from eucalyptus sawdust I. Activated by NaOH. Journal of Inorganic and Organometallic Polymers and Materials 23 (5):1201–09. doi:10.1007/s10904-013-9910-1
  • Chen, C. M., Q. Zhang, X.-C. Zhao, B. Zhang, Q.-Q. Kong, M.-G. Yang, Q.-H. Yang, M.-Z. Wang, Y.-G. Yang, R. Schlögl, et al. 2012. Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. Journal of Materials Chemistry 22(28):14076–84. doi:10.1039/c2jm31426f
  • Couto, G. M., A. L. D. A. Dessimoni, M. L. Bianchi, D. M. Perígolo, and P. F. Trugilho. 2012. Use of sawdust Eucalyptus sp. in the preparation of activated carbons. Ciência e Agrotecnologia 36 (1):69–77. doi:10.1590/s1413-70542012000100009
  • Dao, V. D., L. L. Larina, H. Suh, K. Hong, J. K. Lee, and H. S. Choi. 2014. Optimum strategy for designing a graphene-based counter electrode for dye-sensitized solar cells. Carbon NY 77:980–92. doi:10.1016/j.carbon.2014.06.015
  • Duch, J., M. Gołda-Cępa, W. Piskorz, J. Rysz, and A. Kotarba. 2020. Stability of oxygen-functionalized graphenic surfaces: Theoretical and experimental insights into electronic properties and wettability. Applied Surface Science 539 (July):148190. doi:10.1016/j.apsusc.2020.148190
  • García, A. B., A. Martínez-Alonso, C. A. L. Y Leon, and J. M. D. Tascón. 1998. Modification of the surface properties of an activated carbon by oxygen plasma treatment. Fuel 77 (6):613–24. doi:10.1016/S0016-2361(97)00111-7
  • Garzia Trulli, M., E. Sardella, F. Palumbo, G. Palazzo, L. C. Giannossa, A. Mangone, R. Comparelli, S. Musso, and P. Favia. 2017. Towards highly stable aqueous dispersions of multi-walled carbon nanotubes: The effect of oxygen plasma functionalization. Journal of Colloid and Interface Science 491:255–64. doi:10.1016/j.jcis.2016.12.039
  • Ghanashyam, G., and H. K. Jeong. 2021a. Plasma treated carbon nanofiber for flexible supercapacitors. Journal of Energy Storage 40 (February):102806. doi:10.1016/j.est.2021.102806
  • Ghanashyam, G., and H. K. Jeong. 2021b. Synthesis of nitrogen-doped plasma treated carbon nanofiber as an efficient electrode for symmetric supercapacitor. Journal of Energy Storage 33 (November 2020):102150. doi:10.1016/j.est.2020.102150
  • Grima-Olmedo, C., A. Ramírez-Gómez, D. Gómez-Limón, and C. Clemente-Jul. 2016. Activated carbon from flash pyrolysis of eucalyptus residue. Heliyon 2 (9):e00155. doi:10.1016/j.heliyon.2016.e00155
  • Gupta, R. K., M. Dubey, P. Kharel, Z. Gu, and Q. H. Fan. 2015. Biochar activated by oxygen plasma for supercapacitors. Journal of Power Sources 274:1300–05. doi:10.1016/j.jpowsour.2014.10.169
  • Hong, Y. C., D. H. Shin, S. C. Cho, and H. S. Uhm. 2006. Surface transformation of carbon nanotube powder into super-hydrophobic and measurement of wettability. Chemical Physics Letters 427 (4–6):390–93. doi:10.1016/j.cplett.2006.06.033
  • Jain, A., and S. K. Tripathi. 2013. Converting eucalyptus leaves into mesoporous carbon for its application in quasi solid-state supercapacitors. Journal of Solid State Electrochemistry: Current Research and Development in Science and Technology 17 (9):2545–50. doi:10.1007/s10008-013-2140-1
  • Jain, D., J. Kanungo, and S. K. Tripathi. 2020. Enhancement in performance of supercapacitor using eucalyptus leaves derived activated carbon electrode with CH3COONa and HQ electrolytes: A step towards environment benign supercapacitor. Journal of Alloys and Compounds 832:154956. doi:10.1016/j.jallcom.2020.154956
  • Kulkarni, V., S. Suryawanshi, and P. Kulkarni. 2015. Biosynthesis of copper nanoparticles using aqueous extract of Eucalyptus sp. plant leaves. Current Science 109 (2):255–57.
  • Li, C., Z. Zhuang, X. Jin, and Z. Chen. 2017. A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract. Applied Surface Science 422:469–74. doi:10.1016/j.apsusc.2017.06.032
  • Lota, G., J. Tyczkowski, R. Kapica, K. Lota, and E. Frackowiak. 2010. Carbon materials modified by plasma treatment as electrodes for supercapacitors. Journal of Power Sources 195 (22):7535–39. doi:10.1016/j.jpowsour.2009.12.019
  • Ma, C., A. Nikiforov, D. Hegemann, N. De Geyter, R. Morent, and K. Ostrikov. 2022. Plasma-controlled surface wettability: Recent advances and future applications. International Materials Reviews 68 (1):82–119. doi:10.1080/09506608.2022.2047420
  • Manchala, S., V. S. R. K. Tandava, D. Jampaiah, S. K. Bhargava, and V. Shanker. 2019. Novel and highly efficient strategy for the green synthesis of soluble graphene by aqueous polyphenol extracts of eucalyptus bark and its applications in high-performance supercapacitors. ACS Sustainable Chemistry & Engineering 7 (13):11612–20. doi:10.1021/acssuschemeng.9b01506
  • Mondal, A. K., K. Kretschmer, Y. Zhao, H. Liu, C. Wang, B. Sun, and G. Wang. 2017. Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries. Chemistry – A European Journal 23 (15):3683–90. doi:10.1002/chem.201605019
  • Mopoung, S., and N. Dejang. 2021. Activated carbon preparation from eucalyptus wood chips using continuous carbonization–steam activation process in a batch intermittent rotary kiln. Scientific Reports 11 (1):1–9. doi:10.1038/s41598-021-93249-x
  • Rajasekaran, S. J., and V. Raghavan. 2020. Facile synthesis of activated carbon derived from eucalyptus globulus seed as efficient electrode material for supercapacitors. Diamond and Related Materials 109 (July):108038. doi:10.1016/j.diamond.2020.108038
  • Şahin, Ö., Y. Yardim, O. Baytar, and C. Saka. 2020. Enhanced electrochemical double-layer capacitive performance with CO2 plasma treatment on activated carbon prepared from pyrolysis of pistachio shells. International Journal of Hydrogen Energy 45 (15):8843–52. doi:10.1016/j.ijhydene.2020.01.128
  • Saka, C. 2018. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes. Critical Reviews in Analytical Chemistry 48 (1):1–14. doi:10.1080/10408347.2017.1356699
  • Saka, C., O. Baytar, Y. Yardim, and Ö. Şahin. 2020. Improvement of electrochemical double-layer capacitance by fast and clean oxygen plasma treatment on activated carbon as the electrode material from walnut shells. Biomass and Bioenergy 143 (November):105848. doi:10.1016/j.biombioe.2020.105848
  • Saveetha, S., and K. A. Vijayalakshmi. 2021. The morphological study of FePO4/plasma treated bamboo charcoal composite act as cathode material in energy storage devices. Digest Journal of Nanomaterials and Biostructures 16 (4):1359–63. doi:10.15251/djnb.2021.164.1359
  • Shimodaira, N., and A. Masui. 2002. Raman spectroscopic investigations of activated carbon materials. Journal of Applied Physics 92 (2):902–09. doi:10.1063/1.1487434
  • Sivakumar, D., D. Shankar, S. L. Pavithra, and P. Deepthi. 2016. Eucalyptus wood saw dust activated carbon powder for treating dairy industry wastewater. Journal of Chemical and Pharmaceutical Sciences 9 (3):1584–88.
  • Vijayalakshmi, K. A., K. Vignesh, and N. Karthikeyan. 2015. Synthesis and surface characterization of bamboo charcoal carbon using low temperature plasma treatment. Materials Technology 30 (A2):A99–103. doi:10.1179/17535557A15Y.000000005
  • Wang, J., P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, and X. Zhang. 2017. Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A 5 (6):2411–28. doi:10.1039/c6ta08742f
  • Wang, X., X. Zhou, W. Chen, M. Chen, and C. Liu. 2019. Enhancement of the electrochemical properties of commercial coconut shell-based activated carbon by H2O dielectric barrier discharge plasma. Royal Society Open Science 6 (2):180872. doi:10.1098/rsos.180872
  • Wen, Y., L. Chi, K. Wenelska, X. Wen, X. Chen, and E. Mijowska. 2020. Eucalyptus derived heteroatom-doped hierarchical porous carbons as electrode materials in supercapacitors. Scientific Reports 10 (1):1–12. doi:10.1038/s41598-020-71649-9
  • Wolf, R., and A. C. Sparavigna. 2010. Role of plasma surface treatments on wetting and adhesion. Engineering 2 (06):397–402. doi:10.4236/eng.2010.26052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.