27
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation and electrification of a conventional vehicle into a battery electric vehicle for sustainability mobility

, , &
Pages 6649-6661 | Received 11 Jan 2024, Accepted 30 Apr 2024, Published online: 12 May 2024

References

  • Behi, H., D. Karimi, M. Behi, M. Ghanbarpour, J. Jaguemont, M. A. Sokkeh, F. H. Gandoman, M. Berecibar, and J. Van Mierlo. 2020. A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering 174:115280. doi:10.1016/J.APPLTHERMALENG.2020.115280.
  • Bernagozzi, M., A. Georgoulas, N. Miché, and M. Marengo. 2023. Heat pipes in battery thermal management systems for electric vehicles: A critical review. Applied Thermal Engineering 219:119495. doi:10.1016/J.APPLTHERMALENG.2022.119495.
  • Bernagozzi, M., A. Georgoulas, N. Miché, C. Rouaud, and M. Marengo. 2021. Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts. Applied Thermal Engineering 194:117061. doi:10.1016/J.APPLTHERMALENG.2021.117061.
  • Di Giorgio, P., G. Di Ilio, E. Jannelli, and F. V. Conte. 2022. Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles. Applied Energy 315:118935. doi:10.1016/J.APENERGY.2022.118935.
  • Grau Unda, I., P. Papadopoulos, S. Skarvelis-Kazakos, L. M. Cipcigan, N. Jenkins, and E. Zabala. 2014. Management of electric vehicle battery charging in distribution networks with multi-agent systems. Electric Power Systems Research 110:172–79. doi:10.1016/J.EPSR.2014.01.014.
  • Jin, S., Q. Gao, X. Gao, Y. Gao, and T. Zhang. 2022. Study on dual flow medium system for battery thermal management of electric vehicle. Case Studies in Thermal Engineering 35:102023. doi:10.1016/J.CSITE.2022.102023.
  • Karthick, A., V. Mohanavel, V. K. Chinnaiyan, J. Karpagam, I. Baranilingesan, and S. Rajkumar. 2022. State of charge prediction of battery management system for electric vehicles. Active Electrical Distribution Network: Issues, Solution Techniques, and Applications 163–80. doi:10.1016/B978-0-323-85169-5.00012-5.
  • Kim, J., J. Oh, and H. Lee. 2019. Review on battery thermal management system for electric vehicles. Applied Thermal Engineering 149:192–212. doi:10.1016/J.APPLTHERMALENG.2018.12.020.
  • Li, R., Y. Gan, Q. Luo, Y. Yan, and Y. Li. 2023. Research progress on efficient thermal management system for electric vehicle batteries based on two-phase transformation. Applied Thermal Engineering 234:121270. doi:10.1016/J.APPLTHERMALENG.2023.121270.
  • Min, H., Z. Zhang, W. Sun, Z. Min, Y. Yu, and B. Wang. 2020. A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime. Applied Thermal Engineering 181:115944. doi:10.1016/J.APPLTHERMALENG.2020.115944.
  • Nouri, A., A. Lachheb, and L. El Amraoui. 2024. Optimizing efficiency of vehicle-to-grid system with intelligent management and ANN-PSO algorithm for battery electric vehicles. Electric Power Systems Research 226:109936. doi:10.1016/J.EPSR.2023.109936.
  • Putra, N., B. Ariantara, and R. A. Pamungkas. 2016. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied Thermal Engineering 99:784–89. doi:10.1016/J.APPLTHERMALENG.2016.01.123.
  • Shelly, T. J., J. A. Weibel, D. Ziviani, and E. A. Groll. 2021. Comparative analysis of battery electric vehicle thermal management systems under long-range drive cycles. Applied Thermal Engineering 198:117506. doi:10.1016/J.APPLTHERMALENG.2021.117506.
  • Su, S., W. Li, Y. Li, A. Garg, L. Gao, and Q. Zhou. 2021. Multi-objective design optimization of battery thermal management system for electric vehicles. Applied Thermal Engineering 196:117235. doi:10.1016/J.APPLTHERMALENG.2021.117235.
  • Sung, W., and J. Lee. 2018. Improved capacity estimation technique for the battery management systems of electric vehicles using the fixed-point iteration method. Computers and Chemical Engineering 117:283–90. doi:10.1016/J.COMPCHEMENG.2018.06.023.
  • Tian, Z., W. Gan, X. Zhang, B. Gu, and L. Yang. 2018. Investigation on an integrated thermal management system with battery cooling and motor waste heat recovery for electric vehicle. Applied Thermal Engineering 136:16–27. doi:10.1016/J.APPLTHERMALENG.2018.02.093.
  • Wiriyasart, S., C. Hommalee, S. Sirikasemsuk, R. Prurapark, and P. Naphon. 2020. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Studies in Thermal Engineering 18:100583. doi:10.1016/J.CSITE.2020.100583.
  • Yao, M., Y. Gan, J. Liang, D. Dong, L. Ma, J. Liu, Q. Luo, and Y. Li. 2021. Performance simulation of a heat pipe and refrigerant-based lithium-ion battery thermal management system coupled with electric vehicle air-conditioning. Applied Thermal Engineering 191:116878. doi:10.1016/J.APPLTHERMALENG.2021.116878.
  • Yewola, O. M., A. A. Awonusi, and O. S. Ismail. 2023. Design optimization of Air-Cooled Li-ion battery thermal management system with Step-like divergence plenum for electric vehicles. Alexandria Engineering Journal 71:631–44. doi:10.1016/J.AEJ.2023.03.089.
  • Youssef, R., M. S. Hosen, J. He, M. Al-Saadi, J. Van Mierlo, and M. Berecibar. 2022. Novel design optimization for passive cooling PCM assisted battery thermal management system in electric vehicles. Case Studies in Thermal Engineering 32:101896. doi:10.1016/J.CSITE.2022.101896.
  • Yue, Q. L., C. X. He, J. Sun, J. B. Xu, and T. S. Zhao. 2022. A passive thermal management system with thermally enhanced water adsorbents for lithium-ion batteries powering electric vehicles. Applied Thermal Engineering 207:118156. doi:10.1016/J.APPLTHERMALENG.2022.118156.
  • Zhao, G., X. Wang, M. Negnevitsky, and C. Li. 2023. An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles. Applied Thermal Engineering 219:119626. doi:10.1016/J.APPLTHERMALENG.2022.119626.
  • Zhu, T., R. G. A. Wills, R. Lot, H. Ruan, and Z. Jiang. 2021. Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting. Applied Energy 292:116932. doi:10.1016/J.APENERGY.2021.116932.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.