82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of pre-chamber fuel injection parameters and EGR on the combustion and emissions of a heavy-duty diesel engine

, , , , &
Pages 6662-6684 | Received 06 Dec 2023, Accepted 03 May 2024, Published online: 16 May 2024

References

  • Amsden, A. A., P. J. Orourke, and T. D. Butler. 1989. KIVA–2: A computer program for chemically reactive flows with sprays. Nasa Stirecon Technical Report N 89.
  • Biswas, S., S. Tanvir, H. Wang, and L. Qiao. 2016. On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Applied Thermal Engineering 106:925–37. doi:10.1016/j.applthermaleng.2016.06.070.
  • Flower, W. L., R. K. Hanson, C. H. Kruger Kinetics of the reaction of nitric oxide with hydrogen[C]//In. 15th international symposium on combustion, Tokyo, Japan, 25–31 August 1975: 823–32.
  • Gussak, L. A., V. P. Karpov, and Y. Y. Tikhonov. 1979. The application of the lag-process in pre-chamber engine. SAE Paper 790692.
  • Han, Z. Y., and R. D. Reitz. 1995. Turbulence modeling of internal combustion engines using RNG κ-ε models. Combustion Science and Technology 106 (4–6):267–95. doi:10.1080/00102209508907782.
  • He, X., Y. F. Xu, L. Wang. 2021. Influence of diesel temperature on combustion flame temperature and soot formation characteristics. Transactions of CSICE 39 (2):97–105.
  • Heyne, S., M. Meier, B. Imbert, and D. Favrat. 2009. Experimental investigation of prechamber autoignition in a natural gas engine for cogeneration. Fuel 88 (3):547–52. doi:10.1016/j.fuel.2008.09.032.
  • Huang, J. C., L. Lin, Y. D. Wang, J. Qin, A. P. Roskilly, L. Li, T. Ouyang, and Y. Yu. 2011. Experimental study of the performance and emission characteristics of diesel engine using direct and indirect injection systems and different fuels. Fuel Processing Technology 92 (7):1380–86. doi:10.1016/j.fuproc.2011.03.001.
  • Jiang, X. X., J. Du, H. Chen. 2022. Study on the influence of pre-chamber jet ignition on the performance of gasoline engines. Mechanical Science and Technology for Aerospace Engineering 41 (12):1900–06.
  • Jiang, X. X., H. Q. Wei, L. Zhou, and R. Chen. 2019. Numerical study on the effects of multiple-injection coupled with EGR on combustion and NOx Emissions in a marine diesel engine. Energy Procedia 158:4429–34. doi:10.1016/j.egypro.2019.01.773.
  • Kim, T. Y., C. Park, S. Oh, and G. Cho. 2016. The effects of stratified lean combustion and exhaust gas recirculation on combustion and emission characteristics of an LPG direct injection engine. Energy 115:386–96. doi:10.1016/j.energy.2016.09.025.
  • Li, B., A. Brink, and M. Hupa. 2009. Simplified model for determining local heat flux boundary conditions for slagging wall †. Energy & Fuels 23 (7):3418–22. doi:10.1021/ef800957k.
  • Li, X., M. Z. Feng. 2023. Experimental study on lean combustion characteristics of marine pre–chamber natural gas engines. Transactiens of CSICE 41 (4):324–331.
  • Li, Y. H., H. B. Luo, W. Z. Gao, H. Chen, W. Zhan, and J. Du. 2022. Effects of combustion and emissions of turbulent jet ignition with a small–volume prechamber for a gasoline engine. Journal of Energy Engineering 148 (4). doi:10.1061/(ASCE)EY.1943-7897.0000834.
  • Lin, S. P., and Z. W. Lian. 1990. Mechanisms of the breakup of liquid jets. AIAA journal 28 (1):120–126.
  • Liu, R., L. Huang, X. C. Lv. 2022. Effect of intake pressure on the performance of a diesel engine under different ambient temperature. Transactions of CSICE 40 (6):489–94.
  • Liu, X., M. E. Marquez, S. Sanal, M. Silva, A. S. AlRamadan, E. Cenker, P. Sharma, G. Magnotti, J. W. G. Turner, H. G. Im, et al. 2023. Computational assessment of the effects of pre-chamber and piston geometries on the combustion characteristics of an optical pre-chamber engine. Fuel 341:341. doi:10.1016/j.fuel.2023.127659.
  • Liu, Y. D., J. Ming, M. Z. Xie, and B. Pang. 2012. Enhancement on a skeletal kinetic model for primary reference fuel oxidation by using a semide coupling methodology. Energy & Fuels 26 (12):7069–83. doi:10.1021/ef301242b.
  • Liu, H., Y. A. Yan, M. Jia, Y. Zhang, M. Xie, and H. Yin. 2017. An analytical solution for wall film heating and evaporation. International Communications in Heat and Mass Transfer 87:125–31. doi:10.1016/j.icheatmasstransfer.2017.07.009.
  • Liu, Z. K., L. Zhou, L. J. Zhong, and H. Wei. 2023. Enhanced combustion of ammonia engine based on novel air–assisted pre–chamber turbulent jet ignition. Energy Conversion and Management 276:276. doi:10.1016/j.enconman.2022.116526.
  • Lu, Y. Y., C. Fan, Y. F. Chen, Y. Liu, and Y. Pei. 2023. Effect of injection strategy optimization on PCCI combustion and emissions under engine speed extension in a heavy-duty diesel engine. Fuel 332:126053. doi:10.1016/j.fuel.2022.126053.
  • Lu, Y. Y., C. Fan, Y. Z. Liu, and Y. Pei. 2022. Effects of speed extension on PCCI combustion and emissions in a heavy-duty diesel engine at medium load. Fuel 313:313. doi:10.1016/j.fuel.2021.123048.
  • Nie, J. Y., Y. Z. Liu, J. Y. Wang. Design and experimental study of pre-chamber jet disturbance combustion system for diesel engines. Transactions of CSICE 41 (4):289–297.
  • Nishida, K., and H. Hiroyasu. 1989. Simplified three-dimensional modeling of mixture formation and combustion in a DI diesel engine. SAE transactions 276–293.
  • O’Rourke, P. J. 1981. Collective drop effects on vaporizing liquid sprays[D]. Princeton N J: Princeton University.
  • Ricart, L. M., J. Xin, G. R. Bower, and R. D. Reitz. 1997. In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-Duty Diesel Engine. SAE Transactions 106:1622–1640.
  • Sandoval, M. H. B., C. E. C. Alvarez, V. R. Roso, N. D. S. A. Santos, and R. M. Valle. 2020. The influence of volume variation in a homogeneous prechamber ignition system in combustion characteristics and exhaust emissions. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (1). doi:10.1007/s40430-019-2156-2.
  • Schmidt, D. P., and C. J. Rutland. 2000. A new droplet collision algorithm. Journal of Computational Physics 164 (1):62–80. doi:10.1006/jcph.2000.6568.
  • Sun, X. X., X. Y. Liang, G. Q. Shu, J. Lin, Y. Wang, and Y. Wang. 2017. Numerical investigation of two-stroke marine diesel engine emissions using exhaust gas recirculation at different injection time. Ocean Engineering 144:90–97. doi:10.1016/j.oceaneng.2017.08.044.
  • Wang, H. Y., T. Y. Wang, Y. Z. Feng, Z. Lu, and K. Sun. 2022. Synergistic effect of swirl flow and prechamber jet on the combustion of a natural gas–diesel dual–fuel marine engine. Fuel 325:325. doi:10.1016/j.fuel.2022.124935.
  • Xu, L. N., G. Li, M. F. Yao, Z. Zheng, and H. Wang. 2022. Numerical investigation on the jet characteristics and combustion process of an active prechamber combustion system fueled with natural gas. Energies 15 (15):5356. doi:10.3390/en15155356.
  • Zhang, Z. Q. 2021. The influence of high–dose strong mixing technology on combustion and emissions of heavy-duty diesel engines [D]. Tianjin: School of Mechanical Engineering, Tianjin University.
  • Zhan, W. F., H. B. Luo. 2022. Influence of pre-chamber jet ignition on performance of gasoline engines. Journal of Internal Combustion Engines 40 (3):193–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.