125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of torrefaction on biomass pyrolysis based on thermogravimetric analysis

, , &
Pages 6685-6695 | Received 18 Dec 2023, Accepted 28 Apr 2024, Published online: 16 May 2024

References

  • Bach, Q. V., T. N. Trinh, K. Q. Tran, and B. D. T. Ngoc. 2017. Pyrolysis characteristics and kinetics of biomass torrefied in various atmospheres. Energy Conversion and Management 141:72–78. doi:10.1016/j.enconman.2016.04.097.
  • Chen, D., K. Cen, X. Zhuang, Z. Gan, J. Zhou, Y. Zhang, and H. Zhang. 2022. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio-oil. Combustion and Flame 242:112142. doi:10.1016/j.combustflame.2022.112142.
  • Chen, W. H., Eng C. F, Y. Y. Lin, Q. V. Bach, V. Ashokkumar, and P. L. Show. 2021. Two-step thermodegradation kinetics of cellulose, hemicelluloses, and lignin under isothermal torrefaction analyzed by particle swarm optimization. Energy Conversion and Management 238:114116. doi:10.1016/j.enconman.2021.114116.
  • Chen, W. H., and P. C. Kuo. 2011. Isothermal torrefaction kinetics of hemicellulose, cellulose, lignin and xylan using thermogravimetric analysis. Energy 36 (11):6451–60. doi:10.1016/j.energy.2011.09.022.
  • Chen, D., J. Zhou, Q. Zhang, X. Zhu, and Q. Lu. 2014. Torrefaction of rice husk using TG-FTIR and its effect on the fuel characteristics, carbon, and energy yields. Bio Resources 9 (4):6241–53. doi:10.15376/biores.9.4.6241-6253.
  • Choi, Sang Kyu, Yeon Seok Choi, Seock Joon Kim, So Young Han Han, Yeon Woo Jeong, Yong Su Kwon Kwon, and Quynh Van Nguyen. 2019. Simulation of a tilted-slide reactor for the fast pyrolysis of biomass. Biomass & Bioenergy 126:94–105. doi:10.1016/j.biombioe.2019.05.007.
  • Chu, S., A. V. Subrahmanyam, and G. W. Huber. 2013. The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green Chemistry 15 (1):125–36. doi:10.1039/C2GC36332A.
  • Collard, F.-X., and J. Blin. 2014. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable & Sustainable Energy Reviews 38:594–608. doi:10.1016/j.rser.2014.06.013.
  • Fahmy, T. Y. A., Y. Fahmy, F. Mobarak, M. El-Sakhawy, and R. E. Abou-Zeid. 2020. Biomass pyrolysis: Past, present, and future. Environment, Development and Sustainability 22 (1):17–32. doi:10.1007/s10668-018-0200-5.
  • Faleeva, Y. M., V. A. Lavrenov, and V. M. Zaichenko. 2022. Investigation of plant biomass two-stage pyrolysis based on three major components: Cellulose, hemicellulose, and lignin. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-03385-1.
  • Fu, J., J. Liu, W. Xu, Z. Chen, F. Evrendilek, and S. Sun. 2022. Torrefaction, temperature, and heating rate dependencies of pyrolysis of coffee grounds: Its performances, bio-oils, and emissions. Bioresource Technology 345:345. doi:10.1016/j.biortech.2021.126346.
  • Gani, A., and I. Naruse. 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy 32 (4):649–61. doi:10.1016/j.renene.2006.02.017.
  • Liu, Z., X. Tan, X. Zhuang, H. Yang, X. Chen, Q. Wang, and H. Chen. 2022. Coupling of pretreatment and pyrolysis improving the production of levoglucosan from corncob. Fuel Processing Technology 228:107157. doi:10.1016/j.fuproc.2021.107157.
  • Mason, P. E., L. I. Darvell, J. M. Jones, and A. Williams. 2016. Comparative study of the thermal conductivity of solid biomass fuels. Energy & Fuels 30 (3):2158–63. doi:10.1021/acs.energyfuels.5b02261.
  • Mei, Y., Y. Chen, S. Zhang, Y. Zheng, W. Li, H. Chai, and K. Liu. 2023. Effect of temperature oscillation on torrefaction and pyrolysis of elm branches. Energy 271:271. doi:10.1016/j.energy.2023.127055.
  • Mei, Y., Q. Yang, H. Yang, G. Lin, J. Li, Y. Chen, S. Zhang, and H. Chen. 2018. Low temperature deoxidization of biomass and its release characteristics of gas products. Industrial Crops and Products 123:142–53. doi:10.1016/j.indcrop.2018.06.063.
  • Mei, Y., S. Zhang, S. Shao, H. Wang, and A. Zhang. 2022. Effect of temperature conditions on cornstalks torrefaction and pyrolysis. Acta Energiae Solaris Sinica 43 (9):363.
  • Ong, H. C., K. L. Yu, W. H. Chen, M. K. Pillejera, X. Bi, K. Q. Tran, A. Pétrissans, and M. Pétrissans. 2021. Variation of lignocellulosic biomass structure from torrefaction: A critical review. Renewable & Sustainable Energy Reviews 152:152. doi:10.1016/j.rser.2021.111698.
  • Orisaleye, J. I., S. O. Jekayinfa, R. Pecenka, A. A. Ogundare, M. O. Akinseloyin, and O. L. Fadipe. 2022. Investigation of the effects of torrefaction temperature and residence time on the fuel quality of corncobs in a fixed-bed reactor. Energies 15 (14):5284. doi:10.3390/en15145284.
  • Pecha, M. B., J. I. M. Arbelaez, M. Garcia Perez, F. Chejne, and P. N. Ciesielski. 2019. Progress in understanding the four dominant intra-particle phenomena of lignocellulose pyrolysis: Chemical reactions, heat transfer, mass transfer, and phase change. Green Chemistry 21 (11):2868–98. doi:10.1039/C9GC00585D.
  • Salema, A. A., R. M. W. Ting, and Y. K. Shang. 2019. Pyrolysis of blend (oil palm biomass and sawdust) biomass using TG-MS. Bioresource Technology 274:439–46. doi:10.1016/j.biortech.2018.12.014.
  • Simonic, M., D. Goricanec, and D. Urbancl. 2020. Impact of torrefaction on biomass properties depending on temperature and operation time. Science of the Total Environment 740:740. doi:10.1016/j.scitotenv.2020.140086.
  • Talero, G., S. Rincon, and A. Gomez. 2019. Torrefaction of oil palm residual biomass: Thermogravimetric characterization. Fuel 242:496–506. doi:10.1016/j.fuel.2019.01.057.
  • Valizadeh, S., D. Oh, J. Jae, S. Pyo, H. Jang, H. Yim, G. H. Rhee, M. A. Khan, B. H. Jeon, and K. Y. A. Lin. 2022. Effect of torrefaction and fractional condensation on the quality of bio-oil from biomass pyrolysis for fuel applications. Fuel 312:312. doi:10.1016/j.fuel.2021.122959.
  • Van de Velden, M, J. Baeyens, A. Brems, B. Janssens, and R. Dewil. 2010. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy 35 (1):232–42. doi:10.1016/j.renene.2009.04.019.
  • Wang, G., Y. Dai, H. Yang, Q. Xiong, K. Wang, J. Zhou, Y. Li, and S. Wang. 2020. A review of recent advances in biomass pyrolysis. Energy & Fuels 34 (12):15557–78. doi:10.1021/acs.energyfuels.0c03107.
  • Wang, S., B. Ru, H. Lin, and W. Sun. 2015. Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods. Fuel 150:243–51. doi:10.1016/j.fuel.2015.02.045.
  • Wannapeera, J., B. Fungtammasan, and N. Worasuwannarak. 2011. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. Journal of Analytical and Applied Pyrolysis 92 (1):99–105. doi:10.1016/j.jaap.2011.04.010.
  • Wu, S., D. Shen, J. Hu, H. Zhang, and R. Xiao. 2016. Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods. Biomass & Bioenergy 95:55–63. doi:10.1016/j.biombioe.2016.09.015.
  • Yang, H., N. Yi, S. Zhao, M. F. Qaseem, B. Zheng, H. Li, J.-X. Feng, and A.-M. Wu. 2020. Characterization of hemicelluloses in sugarcane (saccharum spp. hybrids) culm during xylogenesis. International Journal of Biological Macromolecules 165:1119–28. doi:10.1016/j.ijbiomac.2020.09.242.
  • Zhang, S., B. Hu, L. Zhang, and Y. Xiong. 2016. Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon. Journal of Analytical and Applied Pyrolysis 119:217–23. doi:10.1016/j.jaap.2016.03.002.
  • Zhang, R., J. Zhang, W. Guo, Z. Wu, Z. Wang, and B. Yang. 2021. Effect of torrefaction pretreatment on biomass chemical looping gasification (BCLG) characteristics: Gaseous products distribution and kinetic analysis. Energy Conversion and Management 237:237. doi:10.1016/j.enconman.2021.114100.
  • Zheng, A., L. Jiang, Z. Zhao, Z. Huang, K. Zhao, G. Wei, X. Wang, F. He, and H. Li. 2015. Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose. Energy & Fuels 29 (12):8027–34. doi:10.1021/acs.energyfuels.5b01765.
  • Zheng, A., Z. Zhao, S. Chang, Z. Huang, X. Wang, F. He, and H. Li. 2013. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresource Technology 128:370–77. doi:10.1016/j.biortech.2012.10.067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.