Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 4
107
Views
3
CrossRef citations to date
0
Altmetric
Research Article

A Mechanical Model Used for the Multifactor Analysis of Through-Tenon Joints in Traditional Chinese Timber Structures

ORCID Icon, , &
Pages 551-576 | Received 21 Jul 2022, Accepted 20 Jan 2023, Published online: 15 Feb 2023

References

  • Bai, W., M. A. Moustafa, J. Dai, Y. Yang, K. Du, and X. Chen. 2021. Damage assessment of Shuanghe Confucian temple after Changning earthquake mainshock and aftershocks series. Bulletin of Earthquake Engineering 19 (14):5977–6001. doi:10.1007/s10518-021-01207-9.
  • Branco, J. M., M. Piazza, and P. J. S. Cruz. 2011. Experimental evaluation of different strengthening techniques of traditional timber connections. Engineering Structures 33 (8):2259–70. doi:10.1016/j.engstruct.2011.04.002.
  • Chang, W.-S., and M.-F. Hsu. 2007. Rotational performance of traditional Nuki joints with gap II: The behavior of butted Nuki joint and its comparison with continuous Nuki joint. Journal of Wood Science 53 (5):401–07. doi:10.1007/s10086-007-0880-1.
  • Chang, W. S., M. F. Hsu, and K. Komatsu. 2006. Rotational performance of traditional Nuki joints with gap I: Theory and verification. Journal of Wood Science 52 (1):58–62. doi:10.1007/s10086-005-0734-7.
  • Chen, C. 2016. Integral mechanics property analysis and safety evaluation of ancient timber structures. NanJing: Southeast University.
  • Chen, C., H. Qiu, and Y. Lu. 2016. Flexural behaviour of timber dovetail mortise-tenon joints. Construction and Building Materials 112:366–77. doi:10.1016/j.conbuildmat.2016.02.074.
  • Fang, D. P., S. Iwasaki, M. H. Yu, Q. P. Shen, Y. Miyamoto, and H. Hikosaka. 2001. Ancient Chinese timber architecture. I: Experimental study. Journal of Structural Engineering 127 (11):1348–57. doi:10.1061/(asce)0733-9445(2001)127:11(1348).
  • Gao, Y. 2017. Experimental study and theoretical analysis of traditional timber typical mortise-tenon joints based on the wood friction mechanism and embedded pressure characteristics. Kunming: Kunming University of Science and Technology.
  • Gao, Y., Z. Tao, L. Ye, D. Wang, and L. Zhang. 2015. Low-cycle reversed loading tests study on typical mortise-tenon joints of traditional timber building based on friction mechanism. Journal of Building Structures 36 (10):139–45. doi:10.14006/j.jzjgxb.2015.10.017.
  • He, J. 2019. Mechanical Properties of Key Joints and Column Frame in Traditional Timber Structure. Beijing: Beijing Jiaotong University.
  • He, J., P. Yu, J. Wang, Q. Yang, M. Han, and L. Xie. 2021. Theoretical model of bending moment for the penetrated mortise-tenon joint involving gaps in traditional timber structure. Journal of Building Engineering 42:103102. doi:10.1016/j.jobe.2021.103102.
  • ISO 16670. 2003. Timber structures-joints made with mechanical fasteners quasi static reversed cyclic test method. Ottawa: Technical Committee ISO/TC 165, Timber structure.
  • Ma, L., J. Xue, W. Dai, X. Zhang, and X. zhang. 2020. Moment-rotation relationship of mortise-through-tenon connections in historic timber structures. Construction and Building Materials 232:117285. doi:10.1016/j.conbuildmat.2019.117285.
  • Ogawa, K., Y. Sasaki, and M. Yamasaki. 2015. Theoretical modeling and experimental study of Japanese “Watari-ago” joints. Journal of Wood Science 61 (5):481–91. doi:10.1007/s10086-015-1498-3.
  • Ogawa, K., Y. Sasaki, and M. Yamasaki. 2016. Theoretical estimation of the mechanical performance of traditional mortise tenon joint involving a gap. Journal of Wood Science 62 (3):242–50. doi:10.1007/s10086-016-1544-9.
  • Pan, Y., L. Tang, H. Wang, and Y. Yao. 2014. Investigation and analysis of damage to ancient buildings in Lushan Ms 7.0 earthquake. Earthquake Engineering and Engineering Dynamics 34 (1):103–06. doi:10.13197/j.eeev.2014.01.140.pany.018.
  • Pan, Y., C. Wang, C. Ji, and S. Zhao. 2012. Investigation and analysis of seismic damage for Chinese Ancient timber buildings in Wenchuan earthquake. Building Science 28 (7):103–06. doi:10.13614/j.cnki.11-1962/tu.2012.07.010.
  • Pan, Y., C. Wang, L. Tang, and L. Li. 2015. Study on mechanical model of straight-tenon joints in ancient timber structures. Engineering Mechanics 32 (2):82–89. doi:10.6052/j.1000-4750.2013.08.0728.
  • Parisi, M. A., and M. Piazza. 2000. Mechanics of plain and retrofitted traditional timber connections. Journal of Structural Engineering 126 (12):1395–403. doi:10.1061/(asce)0733-9445(2000)126:12(1395).
  • Poletti, E., G. Vasconcelos, J. M. Branco, and B. Isopescu. 2019. Effects of extreme environmental exposure conditions on the mechanical behaviour of traditional carpentry joints. Construction and Building Materials 213:61–78. doi:10.1016/j.conbuildmat.2019.04.030.
  • Seo, J. M., I. K. Choi, and J. R. Lee. 1999. Static and cyclic behavior of wooden frames with tenon joints under lateral load. Journal of Structural Engineering-Asce 125 (3):344–49. doi:10.1061/(asce)0733-9445(1999)125:3(344).
  • Shi, X., T. Li, Y. F. Chen, J. Chen, and Q. Yang. 2020. Full-scale tests on the horizontal hysteretic behavior of a single-span timber frame. International Journal of Architectural Heritage 14 (3):398–414. doi:10.1080/15583058.2018.1547799.
  • Sun, J., H. Qiu, C. Chen, and X. Hao. 2019. Experimental investigation on mechanical behavior of post-and-lintel timber frame and column-and-tie timber frame in ancient timber structures. Journal of Building Structures 40 (7):79–88. doi:10.14006/j.jzjgxb.2017.0816.
  • Suzuki, Y., and M. Maeno. 2006. Structural mechanism of traditional wooden frames by dynamic and static tests. Structural Control & Health Monitoring 13 (1):508–22. doi:10.1002/stc.153.
  • Tanahashi, H., M. Okamura, and Y. Suzuki. 2008. Simple formulation of elasto-plastic embedment behavior of orthotropic wood considering densification. The 10th World Conference on Timber Engineering, Miyazaki.
  • Tanahashi, H., and Y. Suzuki. 2012. Basic concept and general formulation of restoring force characteristics of traditional wooden joints. World Conference on Timber Engineering, Auckland.
  • Wu, Y., X. Song, X. Gu, and L. Luo. 2018. Dynamic performance of a multi-story traditional timber pagoda. Engineering Structures 159:277–85. doi:10.1016/j.engstruct.2018.01.003.
  • Wu, Y., X. Song, C. Ventura, and F. Lam. 2020. Modeling hysteretic behavior of lateral load-resisting elements in traditional Chinese timber structures. Journal of Structural Engineering 146 (5). doi: 10.1061/(asce)st.1943-541x.0002613.
  • Xie, Q., L. Wang, P. Zheng, L. Zhang, and W. Hu. 2018. Rotational behavior of degraded traditional mortise-tenon joints: Experimental tests and hysteretic model. International Journal of Architectural Heritage 12 (1):125–36. doi:10.1080/15583058.2017.1390629.
  • Xie, Q., L. wang, P. Zheng, L. Zhang, and C. Qian. 2017. Theoretical analysis on moment-rotation relationship of straight mortise-tenon joints for Chinese traditional wooden buildings. Journal of Hunan University (Natural Sciences) 44 (7):111–17. doi:10.16339/j.cnki.hdxbzkb.2017.07.014.
  • Xie, Q., J. Xue, and H. Zhao. 2010. Seismic damage investigation and analysis of ancient buildings in Wenchuan earthquake. Journal of Building Structures 31. doi:10.14006/j.jzjgxb.2010.s2.049.
  • Xue, J., H. Xia, Y. Li, and W. Dai. 2017. Experimental study on seismic behavior of penetrated mortise-tenon joints under different degree of looseness in ancient buildings. Journal of Xi'an University of Architecture & Technology (Natural Science Edition) 49 (4):463–677. doi:10.15986/j.1006-7930.2017.04.001.
  • Yang, Q., P. Yu, and S.-S. Law. 2020. Load resisting mechanism of the mortise-tenon connection with gaps under in-plane forces and moments. Engineering Structures 219:110755. doi:10.1016/j.engstruct.2020.110755.
  • Zhang, X., W. Dai, and J. Xue. 2018. Theoretical analysis on moment-rotation relationship of through-tenon joint with gap. Journal of Hunan University (Natural Sciences) 45 (5):125–33. doi:10.16339/j.cnki.hdxbzkb.2018.05.015.
  • Zhang, B., Q. Xie, S. Li, L. Zhang, and Y. Wu. 2022. Effects of gaps on the rotational performance of traditional straight mortise-tenon joints. Engineering Structures 260:114231. doi:10.1016/j.engstruct.2022.114231.
  • Zhao, H., F. Zhang, J. Xue, Q. Xie, X. Zhang, and H. Ma. 2012. Research review on structural performance of ancient timber structure. Journal of Building Structures 33:1–10. doi:10.14006/j.jzjgxb.2012.08.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.