Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 5
999
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the Loss of Uniaxial Compressive Strength of Sandstones Due to Moisture

, &
Pages 771-787 | Received 28 Nov 2022, Accepted 27 Feb 2023, Published online: 17 Mar 2023

References

  • Agliata, R., T. Bogaard, R. Greco, L. Mollo, E. Slob, and S. Steele-Dunne. 2018. Non-invasive estimation of moisture content in tuff bricks by GPR. Construction and Building Materials 160:698–706. doi:10.1016/j.conbuildmat.2017.11.103.
  • Agustawijaya, D. 2007. The uniaxial compressive strength of soft rock. Civil Engineering Dimension 9 (1):9–14.
  • ASTM (American Society for Testing and Materials). 2016. ASTM D5731-16 Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications.
  • ASTM (American Society for Testing and Materials). 2017. ASTM C170-17 Standard test method for compressive strength of dimension stone.
  • ASTM (American Society for Testing and Materials). 2018. ASTM C97-18 Standard test methods for absorption and bulk specific gravity of dimension stone.
  • ASTM (American Society for Testing and Materials). 2019. ASTM D2216-19 Standard test method for laboratory determination of water (moisture) content of soil and rock by mass.
  • Ballivy, G., B. Ladanyi, and D. Gill. 1976. Effect of Water Saturation History on the Strength of Low-Porosity Rocks. STP599-EB Soil Specimen Preparation for Laboratory Testing. In ASTM International Soil Specimen Preparation for Laboratory Testing, ed. D. Sangrey, and R. Mitchell, 4–20. West Conshohocken, PA: ASTM International.
  • Bell, F. 1978. The physical and mechanical properties of the fell sandstones, Northumberland, England. Engineering Geology 12:1–29. doi:10.1016/0013-7952(78)90002-9.
  • Bell, F., and M. Culshaw. 1998. Petrographic and engineering properties of sandstones from the Sneinton Formation, Nottinghamshire, England. Quarterly Journal of Engineering Geology 31 (1):5–19. doi:10.1144/GSL.QJEG.1998.031.P1.02.
  • Binda, L., G. Cardani, and L. Zanzi L. 2010. Nondestructive Testing Evaluation of Drying Process in Flooded Full-Scale Masonry Walls. Journal of Performance of Constructed Facilities 24 (5):473–83. doi:10.1061/(ASCE)CF.1943-5509.0000097.
  • BSI (British Standards Institution). 1999a. BS EN 1925: 1999 Natural stone test methods. Determination of water absorption coefficient by capillarity.
  • BSI (British Standards Institution). 1999b. BS EN 772-10: 1999 Methods of test for masonry units, Part 10: Determination of moisture content of calcium silicate and autoclaved aerated concrete units.
  • BSI (British Standards Institution). 2002. BS EN 13364: 2002 Natural stone test methods. Determination of the breaking load at dowel hole.
  • BSI (British Standards Institution). 2005. BS EN 1996-1-1: 2005 Eurocode 6, Design of masonry structures, Part 1-1: General rules for reinforced and unreinforced masonry structures.
  • BSI (British Standards Institution). 2006a. BS EN 12372: 2006 Natural stone test methods. Determination of flexural strength under concentrated load.
  • BSI (British Standards Institution). 2006b. BS EN 1926: 2006 Natural stone test methods - Determination of compressive strength.
  • BSI (British Standards Institution). 2006c. BS EN 1936: 2006 Natural stone test methods. Determination of real density and apparent density, and of total and open porosity.
  • BSI (British Standards Institution). 2008. BS EN 13755: 2008 Natural stone methods, Determination of water absorption at atmospheric pressure.
  • BSI (British Standards Institution). 2010. BS EN 12371: 2010 Natural stone test methods. Determination of frost resistance.
  • BSI (British Standards Institution). 2011. BS EN 772-1: 2011 Methods of test for masonry units, Part 1: Determination of compressive strength.
  • BSI (British Standards Institution). 2017. BS EN 16682: 2017 Conservation of cultural heritage - Methods of measurement of moisture content, or water content, in materials constituting immovable cultural heritage.
  • Camuffo, D. 2018. Standardization activity in the evaluation of moisture content. Journal of Cultural Heritage 31S:S10–14. doi:10.1016/j.culher.2018.03.021.
  • Celik, M., and A. Ergul. 2015. The influence of the water saturation on the strength of volcanic tuffs used as building stones. Environmental Earth Science 74 (4):3223–39. doi:10.1007/s12665-015-4359-x.
  • Di Tullio, V., N. Proietti, M. Gobbino, D. Capitani, R. Olmi, S. Priori, C. Riminesi, and E. Giani. 2010. Non-destructive mapping of dampness and salts in degraded wall paintings in hypogeous buildings: The case of St. Clement at mass fresco in St. Clement Basilica, Rome. Analytical and Bioanalytical Chemistry 396 (5):1885–96. doi:10.1007/s00216-009-3400-x.
  • Edis, E., I. Flores-Colen, and J. De Brito. 2014. Passive thermographic detection of moisture problems in façades with adhered ceramic cladding. Construction and Building Materials 51:187–97. doi:10.1016/j.conbuildmat.2013.10.085.
  • Fahimifar, A., and H. Soroush. 2007. A Moisture Index Classification System for Rocks (MiC System). Rock Mechanics & Rock Engineering 40 (1):63–79. doi:10.1007/s00603-005-0079-y.
  • Hall, C., and W. Hoff. 2001. Water transport in brick, stone and concrete. 3rd ed. London: CRC Press.
  • Hall, C., and W. Hoff. 2007. Rising damp: Capillary rise dynamics in walls. Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences 463:1871–84. https://www.jstor.org/stable/20209286
  • Hawkins, A. 1998. Aspects of rock strength. Bulletin of Engineering Geology and the Environment 57 (1):17–30. doi:10.1007/s100640050017.
  • Hawkins, A., and B. McConnell. 1992. Sensitivity of sandstone strength and deformability to changes in moisture content. Quarterly Journal of Engineering Geology and Hydrogeology 25 (2):115–30. doi:10.1144/GSL.QJEG.1992.025.02.05.
  • Jeng, F., M. Weng, M. Lin, and T. Huang. 2004. Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan. Engineering Geology 73 (1–2):71–91. doi:10.1016/j.enggeo.2003.12.001.
  • Karakul, H. 2017. Investigation of saturation effect on the relationship between compressive strength and Schmidt hammer rebound. Bulletin of Engineering Geology and the Environment 76 (3):1143–52. doi:10.1007/s10064-016-0883-5.
  • Karakul, H., and R. Ulusay. 2013. Empirical Correlations for Predicting Strength Properties of Rocks from P-wave velocity under different degrees of saturation. Rock Mechanics & Rock Engineering 46:981–99. doi:10.1007/s00603-012-0353-8.
  • Khanlari, G., and Y. Abdilor. 2015. Influence of wet–dry, freeze–thaw, and heat–cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran. Bulletin of Engineering Geology and the Environment 74 (4):1287–300. doi:10.1007/s10064-014-0691-8.
  • Kim, E., M. Stine, D. De Oliveira, and H. Changani. 2017. Correlations between the physical and mechanical properties of sandstones with changes of water content and loading rates. International Journal of Rock Mechanics and Mining Sciences 100:255–62. doi:10.1016/j.ijrmms.2017.11.005.
  • Lai, J., G. Wanga, Z. Wang, J. Chen, X. Pang, S. Wang, Z. Zhou, Z. He, Z. Qin, and X. Fan. 2018. A review on pore structure characterization in tight sandstones. Earth-Science Reviews 177:436–57. doi:10.1016/j.earscirev.2017.12.003.
  • Larsen, P. 2012. Determination of Water Content in Brick Masonry Walls using a Dielectric Probe. Journal of Architectural Conservation 18 (1):47–62. doi:10.1080/13556207.2012.10785103.
  • Lin, M., F. Jeng, L. Tsai, and T. Huang. 2005. Wetting weakening of tertiary sandstones—microscopic mechanism. Environmental Geology 48 (2):265–75. doi:10.1007/s00254-005-1318-y.
  • Liu, Y., Y. Cai, S. Huang, Y. Guo, and G. Liu. 2020. Effect of water saturation on uniaxial compressive strength and damage degree of clay-bearing sandstone under freeze-thaw. Bulletin of Engineering Geology and the Environment 79 (4):2021–36. doi:10.1007/s10064-019-01686-w.
  • Liu, X., C. Yang, and J. Yu. 2015. The Influence of Moisture Content on the time-dependent characteristics for Rocks. Advances in Materials Science and Engineering 2015:1–13. doi:10.1155/2015/725162.
  • Majeed, Y., and M. Abu Bakarb. 2018. Water saturation influences on engineering properties of selected sedimentary rocks of Pakistan. Journal of Mining Science 54 (6):914–93. doi:10.1134/S1062739118065060.
  • Masoumi, H., J. Horne, and W. Timms. 2017. Establishing Empirical Relationships for the Effects of Water Content on the Mechanical Behavior of Gosford Sandstone. Rock Mechanics & Rock Engineering 50 (8):2235–42. doi:10.1007/s00603-017-1243-x.
  • Mollo, L., and G. Greco. 2011. Moisture measurements in masonry materials by time domain reflectometry. Journal of Materials in Civil Engineering 23 (4):441–44. doi:10.1061/(ASCE)MT.1943-5533.0000188.
  • Mol, L., and H. Viles. 2013. Exposing drying patterns: Using electrical resistivity tomography to monitor capillary rise in sandstone under varying drying conditions. Environmental Earth Sciences 68 (6):1647–59. doi:10.1007/s12665-012-1858-x.
  • Orr, S., L. Fusade, M. Young, D. Stelfox, A. Lesliee, J. Currand, and H. Viles. 2020. Moisture monitoring of stone masonry - a comparison of microwave and radar on a granite and a sandstone tower. Journal of Cultural Heritage 41:61–73. doi:10.1016/j.culher.2019.07.011.
  • Phillipson, M., P. Baker, M. Davies, Z. Ye, G. Galbraitha, and R. McLeanc. 2008. Suitability of time domain reflectometry for monitoring moisture in building materials. Building Services Engineering Research & Technology 29 (3):261–72. doi:10.1177/0143624408092423.
  • Price, N. J. 1960. The compressive strength of coal measure rocks. Colliery Engineering 37 (437):283–92.
  • Priest, S., and S. Selvakumar. 1982. The Failure Characteristics of Selected British Rocks. Transport and Road Research Laboratory Report.
  • Proietti, N., P. Calicchia, F. Colao, S. De Simone, V. Di Tullio, L. Luvidi, F. Prestileo, M. Romani, and A. Tatì. 2021. Moisture damage in ancient masonry: A multidisciplinary approach for in situ diagnostics. Minerals 11 (4):406–29. doi:10.3390/min11040406.
  • Rabat, A., M. Cano, and R. Tomas. 2020. Effect of water saturation on strength and deformability of building calcarenite stones: Correlations with their physical properties. Construction and Building Materials 232:117259. doi:10.1016/j.conbuildmat.2019.117259.
  • Rirsch, E., and Z. Zhan. 2010. Rising damp in masonry walls and the importance of mortar properties. Construction and Building Materials 24 (10):1815–20. doi:10.1016/j.conbuildmat.2010.04.024.
  • Roels, S., and J. Carmeliet. 2006. Analysis of moisture flow in porous materials using microfocus X-ray radiography. International Journal of Heat and Mass Transfer 49 (25):4762–72. doi:10.1016/j.ijheatmasstransfer.2006.06.035.
  • Sandrolini, F., and E. Franzoni. 2006. An operative protocol for reliable measurements of moisture in porus materials of ancient buildings. Building and Environment 41 (10):1372–80. doi:10.1016/j.buildenv.2005.05.023.
  • Semerák, P., and R. Cerny. 1997. A capacitance method for measuring the moisture content of building materials. Stavebnıóbzor 6:102–03.
  • Tang, S. 2018. The effects of water on the strength of black sandstone in a brittle regime. Engineering Geology 239:167–78. doi:10.1016/j.enggeo.2018.03.025.
  • Van Eeckhout, E. 1976. Mechanisms of strength reduction due to moisture in coalmine shales. International Journal of Rock Mechanics and Mining Sciences 13 (2):61–67. doi:10.1016/0148-9062(76)90705-1.
  • Vasarhelyi, B. 2003. Some observations regarding the strength and deformability of sandstones in dry and saturated conditions. Bulletin of Engineering Geology and the Environment 62 (3):245–49. doi:10.1007/s10064-002-0186-x.
  • Vasarhelyi, B., and P. Ván. 2006. Influence of water content on the strength of rock. Engineering Geology 84 (1–2):70–74. doi:10.1016/j.enggeo.2005.11.011.
  • Verstrynge, E., R. Adriaens, J. Elsen, and K. Van Balen. 2014. Multi-scale analysis on the influence of moisture on the mechanical behavior of ferruginous sandstone. Construction and Building Materials 54:78–90. doi:10.1016/j.conbuildmat.2013.12.024.
  • Verstrynge, E., L. Schueremans, and D. Van Gemert. 2012. Creep and failure prediction of Diestian ferruginous sandstone: Modelling and repair options. Construction and Building Materials 29:149–57. doi:10.1016/j.conbuildmat.2011.10.042.
  • Wiid, B. 1967. The influence of moisture upon the strength behaviour of rock. PhD diss., University of Witwatersrand.
  • Winkler, E. 1994. Stone in architecture: Properties, durability. 3rd ed. Heidelburg: Springer-Verlag.
  • Wong, L., V. Maruvanchery, and G. Liu. 2016. Water effects on rock strength and stiffness degradation. Acta Geotechnica 11 (4):713–37. doi:10.1007/s11440-015-0407-7.
  • Xi, K., Y. Cao, Y. Wang, Q. Zhang, J. Jin, R. Zhu, S. Zhang, J. Wang, T. Yang, and L. Du. 2015. Factors influencing physical property evolution in sandstone mechanical compaction: The evidence from diagenetic simulation experiments. Petroleum Science 12 (3):391–405. doi:10.1007/s12182-015-0045-6.
  • Yao, W., C. Li, H. Zhan, J. Zhou, R. Criss, S. Xiong, and X. Jiang. 2020. Multiscale Study of Physical and Mechanical Properties of Sandstone in Three Gorges Reservoir Region Subjected to Cyclic Wetting–Drying of Yangtze River Water. Rock Mechanics & Rock Engineering 53 (5):2215–31. doi:10.1007/s00603-019-02037-7.
  • Yasar, S. 2020. Long term wetting characteristics and saturation induced strength reduction of some igneous rocks. Environmental Earth Sciences 79 (14):353. doi:10.1007/s12665-020-09105-0.
  • Yates, T., D. Richardson, and B. Miglio. 2012. Changes in engineering properties of natural stone. Proceedings of the Institution of Civil Engineers Construction Materials 165 (3):127–33. doi:10.1680/coma.9.00023.
  • Zhang, D., R. Gamage, M. Perera, C. Zhang, and W. Wanniarachchi. 2017. Influence of water saturation on the mechanical behaviour of low-permeability reservoir rocks. Energies (Basel) 10 (2):236–55. doi:10.3390/en10020236.
  • Zhao, J., E. Rivera, A. Mufti, D. Stephenson, and D. Thomson. 2012. Evaluation of dielectric based and other methods for moisture content measurement in building stones. Journal of Civil Structural Health Monitoring 2 (3–4):137–48. doi:10.1007/s13349-012-0024-1.
  • Zhou, Z., X. Cai, W. Cao, X. Li, and C. Xiong. 2016. Influence of water content on mechanical properties of rock. Rock Mechanics & Rock Engineering 49 (8):3009–25. doi:10.1007/s00603-016-0987-z.