Publication Cover
International Journal of Architectural Heritage
Conservation, Analysis, and Restoration
Volume 18, 2024 - Issue 4
816
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Seismic Retrofit of Pilotis Buildings by Novel Aluminium Buckling-Restrained Braces (Al-BRBs). Application to a Modernist Architecture Building in Lisbon

ORCID Icon, ORCID Icon & ORCID Icon
Pages 669-690 | Received 16 Dec 2022, Accepted 10 Apr 2023, Published online: 28 Apr 2023

References

  • AISC. 2016. Seismic provisions for structural steel buildings. American Institute of Steel Construction.
  • Almeida, A., R. Ferreira, J. M. Proença, and A. S. Gago. 2017. Seismic retrofit of RC building structures with Buckling-Restrained Braces. Engineering Structures 130:14–22. doi:10.1016/j.engstruct.2016.09.036.
  • Antonucci, R., F. Balducci, M. G. Castellano, and F. Donà (2006), “Pre-casted RC buildings with Buckling-Restrained braces: The example of the new building of the faculty of engineering in Ancona”. Proceedings of the Second International fib Congress, Napoli, Italy, June.
  • ATC-40. (1996), “Seismic evaluation and retrofit of concrete buildings”. Report No. SSC 96-01 (two volumes). Applied Technical Council, Redwood City, California, US.
  • Avci-Karatas, C., and O. Celik (2013), “Cyclic testing of aluminum alloy core Buckling-Restrained braces (BRBs)”. Proceedings of the 10th International Conference on Urban Earthquake Engineering (10th CUEE), Tokyo, Japan, March.
  • Avci-Karatas, C., O. Celik, and C. Yalcin. 2018. Experimental investigation of aluminum alloy and steel core Buckling-Restrained braces (BRBs). International Journal of Steel Structures 18 (2):10.1007/s13296-018-0025-y. doi:10.1007/s13296-018-0025-y.
  • CEN. 2005. EN 1998-3:2005 Eurocode 8 – Part 3: Design of structures for earthquake resistance – Assessment and retrofitting of buildings. Comité Européen de Normalisation: European Committee for Standardization. Brussels.
  • CEN. 2010. EN 15129:2010 Anti-seismic devices. Instituto Português da Qualidade: European Committee for Standardization. Brussels.
  • CEN/CT 115(LNEC) (2010) NP EN 1998-1:2010: Eurocódigo 8 — Projeto de estruturas para resistência aos sismos — Parte 1: Regras gerais, ações sísmicas e regras para edifícios, European Committee for Standardization/Comissão Técnica 115 (Laboratório Nacional de Engenharia Civil), Instituto Português da Qualidade (IPQ). [in Portuguese]
  • CEN/CT 115(LNEC) (2017) NP EN 1998-3:2017: Eurocódigo 8 — Projeto de estruturas para resistência aos sismos — Parte 3: Avaliação e reabilitação de edifícios, European Committee for Standardization/Comissão Técnica 115 (Laboratório Nacional de Engenharia Civil), Instituto Português da Qualidade (IPQ). [in Portuguese]
  • Chopra, A. K., D. P. Clough, and R. W. Clough. 1973. Earthquake resistance of buildings with a ‘soft’ first storey. Earthquake Engineering & Structural Dynamics 1 (4):347–55. doi:10.1002/eqe.4290010405.
  • Corbusier, L. 1923. Vers une Architecture, Collection de “L’esprit nouveau”. Paris, France: G. Crès et Cie.
  • Crisafulli, F. J. (1997), “Seismic Behaviour of Reinforced Concrete Structures with Masonry Infills”. PhD Thesis, University of Canterbury, New Zealand.
  • De Luca, F., G. M. Verderame, and G. Manfredi. 2014. Eurocode-based seismic assessment of modern heritage RC structures: The case of the Tower of the Nations in Naples (Italy). Engineering Structures 74:96–110. doi:10.1016/j.engstruct.2014.05.015.
  • Dusicka, P., and J. Tinker. 2013. Global restraint in ultra-lightweight buckling-restrained braces. Journal of Composites for Construction 17 (1):139–50. doi:10.1061/(ASCE)CC.1943-5614.0000320.
  • Fajfar, P. 2000. A nonlinear analysis method for performance-based seismic design. Earthquake Spectra 16 (3):573–93. doi:10.1193/1.1586128.
  • Ferreira, R., A. C. Ferro, J. Proença, and A. Gago. 2021. Aluminum alloys for hysteretic dissipative devices: mechanical characterization. Journal of Materials Engineering and Performance 30 (1):10.1007/s11665-021-05847-5. doi:10.1007/s11665-021-05847-5.
  • Fintel, M., and F. R. Khan. 1969. Shock absorbing soft story concept for multistory earthquake structure. Journal of the American Concrete Institute 66:381–90.
  • Fip Industriale (2006), Strutture prefabbricate com controventi dissipativi: l’esempio del nuovo polo didattico della Facoltá di Ingegnaria dell’Università Politecnica delle Marche di Ancona. Fip Industriale Report, Padova, Italy. [in Italian].
  • Fonseca, J., H. Rodrigues, H. Varum, A. Costa, and A. Tostões (2008), “Restauro ou conservação no reforço sísmico da unidade tipo A da Avenida Infante Santo”. Proceedings of the 4th International Conference on Structural Defects and Repair (CINPAR 2008), Aveiro, Portugal, June. [in Portuguese]
  • Foti, D. 2014. Shear vulnerability of historical reinforced-concrete structures. International Journal of Architectural Heritage 9 (4):453–67. doi:10.1080/15583058.2013.800920.
  • Furtado, A., H. Rodrigues, H. Varum, and A. Costa. 2016. Evaluation of different strengthening techniques’ efficiency for a soft storey building. European Journal of Environmental and Civil Engineering 1–18. doi:10.1080/19648189.2015.1119064.
  • Giuffrè, A., and P. E. Pinto. 1970. Il comportamento del cemento armato per sollecitazioni cicliche di forte intensità. Giornale del Genio Civile 108:391–408. in Italian.
  • Gong, M., Z. Zuo, X. Wang, X. Lu, and L. Xie. 2019. Comparing seismic performances of pilotis and bare RC frame structures by shaking table tests. Engineering Structures 199 (2):109442. doi:10.1016/j.engstruct.2019.109442.
  • Green, N. B. 1935. Flexible first story construction for earthquake resistance. Transactions, American Society of Civil Engineers 100 (1):645–74. doi:10.1061/TACEAT.0004638.
  • Guevara-Perez, T. (2012), ““Soft Story” and “Weak Story” in Earthquake Resistant Design: A Multidisciplinary Approach”. Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal, September.
  • Jacobsen, L. S. 1938. Effects of a flexible first storey in a building located on vibrating ground. In S. Timoshenko 60th Anniversary Volume, 93–103. New York: Macmillan.
  • Kabir, M. Z., and P. Shadan (2011), “Seismic Performance of 3D-Panel Wall on Piloti RC Frame Using Shaking Table Equipment”. Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, July.
  • Kabir, M. Z., P. Shadan, and H. Kabir. 2018. A numerical and experimental study on the dynamical behavior of 3D-Panel Wall on Piloti RC Frame. International Journal of Structural Integrity 9(6): doi:10.1108/IJSI-09-2017-0053. 00-00.
  • Kasai, K., Y. Fu, and A. Watanabe. 1998. Passive control systems for seismic damage mitigation. J Struct Eng-ASCE 124 (5):501–12. doi:10.1061/(ASCE)0733-9445(1998)124:5(501).
  • Langenbach, R. 2007. From “Opus Craticium” to the “Chicago Frame”: Earthquake-Resistant Traditional Construction. International Journal of Architectural Heritage 1 (1):29–59. doi:10.1080/15583050601125998.
  • Liu, Y., L. Zhou, and C. -L. Wang. 2016. Low-cycle fatigue testing of a novel aluminum alloy buckling-restrained brace. Key Engineering Materials 710:345–50. https://www.scientific.net/doi:10.4028/KEM.710.345.
  • Mahin, S. A., V. V. Bertero, A. K. Chopra, and R. G. Collins (1976), “Response of the Olive View hospital main building during the san fernando earthquake”, Report No. EERC 76-22, Earthquake Engineering Research Center.
  • Mander, J. B., N. Priestley, and R. Park. 1988. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, American Society of Civil Engineers (ASCE), 114 (8):1804–26. 1804-1826.10.1061/(ASCE)0733-9445(1988)114:8(1804). doi:10.1061/(ASCE)0733-9445(1988)114:8(1804).
  • Martel, R. R. 1929. The effects of earthquakes on buildings with a flexible first story. Bulletin of the Seismological Society of America 19 (3):167–78. doi:10.1785/BSSA0190030167.
  • Martínez-Rueda, J., and A. Elnashai. 1997. Confined concrete model under cyclic load. Materials and Structures 30 (3):139–47. doi:10.1007/BF02486385.
  • Menegotto, M., and P. E. Pinto (1973), “Method of analysis for cyclically loaded R. C. plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending”. Preliminary report, IABSE Symposium, IABSE Reports, Vol. 13, Lisbon, Portugal.
  • Pires, F. (1990), “Influência das Paredes de Alvenaria no Comportamento de Estruturas Reticuladas de Betão Armado Sujeitas a Ações Horizontais”. Specialist Thesis (eq. PhD Thesis), Laboratório Nacional de Engenharia Civil (LNEC), Lisbon. [in Portuguese]
  • Ribeiro, V. (2021), “Avaliação da Vulnerabilidade Sísmica de Estruturas de Edifícios com “Pilotis””, MSc Dissertation, Instituto Superior Técnico – University of Lisbon, Lisbon. [in Portuguese]
  • Rodrigues, H., J. Fonseca, A. Costa, H. Varum, and A. Tostões (2005), “Seismic vulnerability of Modern Architecture building’s -Le Corbusier style: A case study”. Proceedings of the International Conference on the 250th Anniversary of the 1755 Lisbon Earthquake, Lisbon, Portugal, November.
  • Rodrigues, H., H. Varum, and A. Costa. 2008. A non-linear masonry infill macro-model to represent the global behaviour of buildings under cyclic loading. International Journal of Mechanics and Materials in Design 4 (2):123–35. doi:10.1007/s10999-008-9070-6.
  • Rosenblueth, E., and R. Meli. 1986. The 1985 earthquake: Causes and effects in Mexico City. Concrete International 8 (5):23–34.
  • Ruiz, S., and R. Diederich. 1989. The Mexico Earthquake of September 19, 1985—The Seismic Performance of Buildings with Weak First Storey. Earthquake Spectra 5 (1):89–102. doi:10.1193/1.1585512.
  • Santhi, M. H., G. Knight, and K. Muthumani. 2005. Evaluation of seismic response of soft-storey infilled frames. Computers and Concrete 2 (6):423–37. doi:10.12989/cac.2005.2.6.423.
  • Seismosoft. (2004). SeismoStruct – a computer program for static and dynamic nonlinear analysis of framed structures [online]. Retrieved from http://www.seismosoft.compossiblyin2015.
  • Seismosoft. (2021), “SeismoStruct 2021 – a computer program for static and dynamic nonlinear analysis of framed structures”, available from https://seismosoft.com/
  • Singh, V. P., and D. C. Rai (2014), “Aluminum Buckling-Restrained braces for seismic resistance of truss moment frames”. Proceedings of the 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering, 10NCEE, Anchorage, US, July. NCEE 2014. 10.4231/D3JS9H83P
  • Smyrou, E., C. Blandon, S. Antoniou, R. Pinho, and F. Crisafulli. 2011. Implementation and verification of a masonry panel model for nonlinear dynamic analysis of infilled RC frames. Bulletin of Earthquake Engineering 9 (5):1519–34. doi:10.1007/s10518-011-9262-6.
  • Sorace, S., and G. Terenzi. 2013. Structural assessment of a modern heritage building. Engineering Structures 49:743–55. doi:10.1016/j.engstruct.2012.12.012.
  • Terenzi, G., E. Fuso, S. Sorace, and I. Costoli. 2020. Enhanced seismic retrofit of a reinforced concrete building of architectural interest. Buildings 10 (11):211. doi:10.3390/buildings10110211.
  • Usami, T., C. -L. Wang, and J. Funayama. 2012. Developing high‐performance aluminum alloy buckling‐restrained braces based on series of low‐cycle fatigue tests. Earthquake Engineering & Structural Dynamics 41 (4):643–61. doi:10.1002/eqe.1149.
  • Vigh, L., Á. Zsarnóczay, and T. Balogh. 2017. Eurocode conforming design of BRBF – Part I: Proposal for codification. Journal of Constructional Steel Research 135:265–76. doi:10.1016/j.jcsr.2017.04.010.
  • Wang, C. -L., T. Usami, J. Funayama, and F. Imase. 2013. Low-cycle fatigue testing of extruded aluminium alloy buckling-restrained braces. Engineering Structures 46:294–301. doi:10.1016/j.engstruct.2012.07.016.
  • Zeris, C., S. Mahin, and V. Bertero (1986), “Analysis of the seismic performance of the imperial county services building”. Proceedings of the Third U. S. National Conference of Earthquake Engineering, Charleston, North Carolina, US, August.
  • Zeris, C., and A. Scodeggio (2016), “An Investigation of the inelastic response of RC pilotis systems”. Proceedings of the 17th Hellenic Concrete Conference, Thessaloniki, Greece, November.
  • Zhou, Y., S. Hetian, Y. Cao, and E. Lui. 2021. Application of buckling-restrained braces to earthquake-resistant design of buildings: A review. Engineering Structures 246(5): doi:10.1016/j.engstruct.2021.112991. 112991. 1-20.
  • Zsarnóczay, Á., V. Budaházy, L. Vigh, and L. Dunai. 2013. Cyclic hardening criteria in EN 15129 for steel dissipative braces. Journal of Constructional Steel Research 83:1–9. doi:10.1016/j.jcsr.2012.12.013.