409
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Revealing Structural and Physical Properties of Polylactide: What Simulation Can Do beyond the Experimental Methods

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 80-118 | Received 06 Oct 2022, Accepted 24 Jan 2023, Published online: 12 Feb 2023

References

  • Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(Lactic Acid) Modifications. Prog. Polym. Sci. 2010, 35, 338–356. DOI: 10.1016/j.progpolymsci.2009.12.003.
  • Tan, B. H.; Muiruri, J. K.; Li, Z.; He, C. Recent Progress in Using Stereocomplexation for Enhancement of Thermal and Mechanical Property of Polylactide. ACS Sustainable Chem. Eng. 2016, 4, 5370–5391. DOI: 10.1021/acssuschemeng.6b01713.
  • Righetti, M. C. Amorphous Fractions of Poly(Lactic Acid). In Synthesis, Structure and Properties of Poly(lactic acid); Di Lorenzo, M. L.; Androsch, R.; Eds.; Advances in Polymer Science; Springer International Publishing: Cham, 2017; Vol. 279, pp 195–234. DOI: 10.1007/12_2016_14.
  • Vacaras, S.; Baciut, M.; Lucaciu, O.; Dinu, C.; Baciut, G.; Crisan, L.; Hedesiu, M.; Crisan, B.; Onisor, F.; Armencea, G.; et al. Understanding the Basis of Medical Use of Poly-Lactide-Based Resorbable Polymers and Composites – A Review of the Clinical and Metabolic Impact. Drug Metab. Rev. 2019, 51, 570–588. DOI: 10.1080/03602532.2019.1642911.
  • Zaaba, N. F.; Jaafar, M. A Review on Degradation Mechanisms of Polylactic Acid: Hydrolytic, Photodegradative, Microbial, and Enzymatic Degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. DOI: 10.1002/pen.25511.
  • Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N. D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D. N. Poly (Lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—from Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers 2021, 13, 1822–1850. DOI: 10.3390/polym13111822.
  • Milovanovic, S.; Pajnik, J.; Lukic, I. Tailoring of Advanced Poly(Lactic Acid)-Based Materials: A Review. J. Appl. Polym. Sci. 2022, 139, 51839–51826. DOI: 10.1002/app.51839.
  • Nagarajan, V.; Mohanty, A. K.; Misra, M. Perspective on Polylactic Acid (PLA) Based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustainable Chem. Eng. 2016, 4, 2899–2916. DOI: 10.1021/acssuschemeng.6b00321.
  • Razavi, M.; Wang, S.-Q. Why is Crystalline Poly (Lactic Acid) Brittle at Room Temperature? Macromolecules 2019, 52, 5429–5441. DOI: 10.1021/acs.macromol.9b00595.
  • Schippers, C.; Bahners, T.; Gutmann, J. S.; Tsarkova, L. A. Elaborating Mechanisms behind the Durability of Tough Polylactide Monofilaments under Elevated Temperature and Humidity Conditions. ACS Appl. Polym. Mater. 2021, 3, 1406–1414. DOI: 10.1021/acsapm.0c01274.
  • Peter, C.; Kremer, K. Multiscale Simulation of Soft Matter Systems – from the Atomistic to the Coarse-Grained Level and Back. Soft Matter 2009, 5, 4357–4366. DOI: 10.1039/b912027k.
  • Khalatur, P. G. Molecular Dynamics Simulations in Polymer Science: Methods and Main Results. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Moeller, M., Eds.; Elsevier BV: Amsterdam, 2012; Vol. 1, pp 417–460.
  • Rühle, V.; Junghans, C.; Lukyanov, A.; Kremer, K.; Andrienko, D. Versatile Object-Oriented Toolkit for Coarse-Graining Applications. J. Chem. Theory Comput. 2009, 5, 3211–3223. DOI: 10.1021/ct900369w.
  • Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell‐Type Expansion Using Quantum‐Field Theoretical Methods. J. Chem. Phys. 1966, 45, 4256–4266. DOI: 10.1063/1.1727484.
  • Møller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622. DOI: 10.1103/PhysRev.46.618.
  • Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. DOI: 10.1103/PhysRev.136.B864.
  • Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. DOI: 10.1103/PhysRev.140.A1133.
  • Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A Gen. Phys. 1988, 38, 3098–3100. DOI: 10.1103/PhysRevA.38.3098.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
  • Davidson, E. R.; Feller, D. Basis Set Selection for Molecular Calculations. Chem. Rev. 1986, 86, 681–696. DOI: 10.1021/cr00074a002.
  • Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. DOI: 10.1063/1.1677527.
  • Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. DOI: 10.1063/1.456153.
  • Grauso, L.; Teta, R.; Esposito, G.; Menna, M.; Mangoni, A. Computational Prediction of Chiroptical Properties in Structure Elucidation of Natural Products. Nat. Prod. Rep. 2019, 36, 1005–1030. DOI: 10.1039/C9NP00018F.
  • Friesner, R. A. Ab Initio Quantum Chemistry: Methodology and Applications. Proc. Natl. Acad. Sci. USA 2005, 102, 6648–6653. DOI: 10.1073/pnas.0408036102.
  • Ratcliff, L. E.; Mohr, S.; Huhs, G.; Deutsch, T.; Masella, M.; Genovese, L. Challenges in Large Scale Quantum Mechanical Calculations. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2017, 7, e1290. DOI: 10.1002/wcms.1290.
  • Baudin, P.; Ettenhuber, P.; Reine, S.; Kristensen, K.; Kjærgaard, T. Efficient Linear-Scaling Second-Order Møller-Plesset Perturbation Theory: The Divide–Expand–Consolidate RI-MP2 Model. J. Chem. Phys. 2016, 144, 054102–054110. DOI: 10.1063/1.4940732.
  • Szabó, P. B.; Csóka, J.; Kállay, M.; Nagy, P. R. Linear-Scaling Open-Shell MP2 Approach: Algorithm, Benchmarks, and Large-Scale Applications. J. Chem. Theory Comput. 2021, 17, 2886–2905. DOI: 10.1021/acs.jctc.1c00093.
  • VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach. Comput. Phys. Commun. 2005, 167, 103–128. DOI: 10.1016/j.cpc.2004.12.014.
  • Artacho, E.; Sánchez‐Portal, D.; Ordejón, P.; Garcia, A.; Soler, J. M. Linear-Scaling Ab-Initio Calculations for Large and Complex Systems. Phys. Stat. Sol. (b) 1999, 215, 809–817. DOI: 10.1002/(SICI)1521-3951(199909)215:1 < 809::AID-PSSB809 > 3.0.CO;2-0.
  • Wu, W.; Li, W.; Wang, L.; Zhang, P.; Zhang, J. Density Functional Theory Study on Lactides: Geometries, IR, NMR and Electronic Spectra. J. Mol. Struct. Theochem. 2007, 816, 13–19. DOI: 10.1016/j.theochem.2007.03.033.
  • Lin, T. T.; Liu, X. Y.; He, C. A DFT Study on Poly(Lactic Acid) Polymorphs. Polymer 2010, 51, 2779–2785. DOI: 10.1016/j.polymer.2010.03.062.
  • Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method. J. Comput. Chem. 2000, 21, 132–146. DOI: 10.1002/(SICI)1096-987X(20000130)21:2 < 132::AID-JCC5 > 3.0.CO;2-P.
  • Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation. J. Comput. Chem. 2002, 23, 1623–1641. DOI: 10.1002/jcc.10128.
  • Sousa da Silva, A. W.; Vranken, W. F. ACPYPE-Antechamber Python Parser Interface. BMC Res. Notes 2012, 5, 367. DOI: 10.1186/1756-0500-5-367.
  • Mulliken, R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23, 1833–1840. DOI: 10.1063/1.1740588.
  • Mulliken, R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies. J. Chem. Phys. 1955, 23, 1841–1846. DOI: 10.1063/1.1740589.
  • Löwdin, P. ‐O. On the Non‐Orthogonality Problem Connected with the Use of Atomic Wave Functions in the Theory of Molecules and Crystals. J. Chem. Phys. 1950, 18, 365–375. DOI: 10.1063/1.1747632.
  • Hirshfeld, F. L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theoret. Chim. Acta 1977, 44, 129–138. DOI: 10.1007/BF00549096.
  • Ritchie, J. P. Electron Density Distribution Analysis for Nitromethane, Nitromethide, and Nitramide. J. Am. Chem. Soc. 1985, 107, 1829–1837. DOI: 10.1021/ja00293a005.
  • Ritchie, J. P.; Bachrach, S. M. Some Methods and Applications of Electron Density Distribution Analysis. J. Comput. Chem. 1987, 8, 499–509. DOI: 10.1002/jcc.540080430.
  • Breneman, C. M.; Wiberg, K. B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem. 1990, 11, 361–373. DOI: 10.1002/jcc.540110311.
  • Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. ACS Publ. 1993, 97, 10269–10280. DOI: 10.1021/j100142a004.
  • Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. Accurate Partial Atomic Charges for High-Energy Molecules Using Class IV Charge Models with the MIDI!. Theor. Chem. Acc. 2005, 113, 133–151. DOI: 10.1007/s00214-004-0624-x.
  • Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. DOI: 10.1021/jp810292n.
  • Casalini, T.; Rossi, F.; Santoro, M.; Perale, G. Structural Characterization of Poly-L-Lactic Acid (PLLA) and Poly(Glycolic Acid)(PGA) Oligomers. Int. J. Mol. Sci. 2011, 12, 3857–3870. DOI: 10.3390/ijms12063857.
  • Xiang, T. ‐X; Anderson, B. D. Water Uptake, Distribution, and Mobility in Amorphous Poly(D,L‐Lactide) by Molecular Dynamics Simulation. J. Pharm. Sci. 2014, 103, 2759–2771. DOI: 10.1002/jps.23855.
  • Glova, A. D.; Falkovich, S. G.; Dmitrienko, D. I.; Lyulin, A. V.; Larin, S. V.; Nazarychev, V. M.; Karttunen, M.; Lyulin, S. V. Scale-Dependent Miscibility of Polylactide and Polyhydroxybutyrate: Molecular Dynamics Simulations. Macromolecules 2018, 51, 552–563. DOI: 10.1021/acs.macromol.7b01640.
  • Glova, A. D.; Melnikova, S. D.; Mercurieva, A. A.; Larin, S. V.; Lyulin, S. V. Grafting-Induced Structural Ordering of Lactide Chains. Polymers 2019, 11, 2056–2051. 18, DOI: 10.3390/polym11122056.
  • Glova, A. D.; Larin, S. V.; Nazarychev, V. M.; Karttunen, M.; Lyulin, S. V. Grafted Dipolar Chains: Dipoles and Restricted Freedom Lead to Unexpected Hairpins. Macromolecules 2020, 53, 29–38. DOI: 10.1021/acs.macromol.9b02288.
  • Glova, A. D.; Melnikova, S. D.; Mercurieva, A. A.; Larin, S. V.; Nazarychev, V. M.; Polotsky, A. A.; Lyulin, S. V. Branched versus Linear Lactide Chains for Cellulose Nanoparticle Modification: An Atomistic Molecular Dynamics Study. Phys. Chem. Chem. Phys. 2021, 23, 457–469. DOI: 10.1039/D0CP04556J.
  • Guseva, D. V.; Lazutin, A. A.; Vasilevskaya, V. V. Atomistic Simulation of Poly (Lactic Acid) of Different Regioregularity. Polymer 2021, 221, 123577–123513. DOI: 10.1016/j.polymer.2021.123577.
  • Blomqvist, J.; Ahjopalo, L.; Mannfors, B.; Pietilä, L.-O. Studies on Aliphatic Polyesters I: Ab Initio, Density Functional and Force Field Studies of Esters with One Carboxyl Group. J. Mol. Struct. Theochem. 1999, 488, 247–262. DOI: 10.1016/S0166-1280(99)00038-X.
  • Blomqvist, J.; Mannfors, B.; Pietilä, L.-O. Studies on Aliphatic Polyesters. Part II. Ab Initio, Density Functional and Force Field Studies of Model Molecules with Two Carboxyl Groups. J. Mol. Struct. Theochem. 2000, 531, 359–374. DOI: 10.1016/S0166-1280(00)00453-X.
  • McAliley, J. H.; O'Brien, C. P.; Bruce, D. A. Continuum Electrostatics for Electronic Structure Calculations in Bulk Amorphous Polymers: Application to Polylactide. J. Phys. Chem. A 2008, 112, 7244–7249. DOI: 10.1021/jp712114q.
  • Sasanuma, Y.; Touge, D. Configurational Statistics of Poly(L-Lactide) and Poly(DL-Lactide) Chains. Polymer 2014, 55, 1901–1911. DOI: 10.1016/j.polymer.2014.01.059.
  • McAliley, J. H.; Bruce, D. A. Development of Force Field Parameters for Molecular Simulation of Polylactide. J. Chem. Theory Comput. 2011, 7, 3756–3767. DOI: 10.1021/ct200251x.
  • Lin, T.; Liu, X.-Y.; He, C. Ab Initio Elasticity of Poly(Lactic Acid) Crystals. J. Phys. Chem. B 2010, 114, 3133–3139. DOI: 10.1021/jp911198p.
  • Lin, T.; Liu, X.-Y.; He, C. Calculation of Infrared/Raman Spectra and Dielectric Properties of Various Crystalline Poly(Lactic Acid)s by Density Functional Perturbation Theory (DFPT) Method. J. Phys. Chem. B 2012, 116, 1524–1535. DOI: 10.1021/jp210123q.
  • Rufino, T. D. C.; Felisberti, M. I. Confined PEO Crystallisation in Immiscible PEO/PLLA Blends. RSC Adv. 2016, 6, 30937–30950. DOI: 10.1039/C6RA02406H.
  • Perdew, J. P.; Yue, W. Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation. Phys. Rev. B Condens. Matter 1986, 33, 8800–8802. DOI: 10.1103/PhysRevB.33.8800.
  • Perdew, J. P.; Ziesche, P.; Eschrig, H. Electronic Structure of Solids’ 91; Akademie Verlag: Berlin, 1991.
  • Blomqvist, J. RIS Metropolis Monte Carlo Studies of Poly(L-Lactic), Poly(L,D-Lactic) and Polyglycolic Acids. Polymer 2001, 42, 3515–3521. DOI: 10.1016/S0032-3861(00)00704-7.
  • Brant, D. A.; Tonelli, A. E.; Flory, P. J. The Configurational Statistics of Random Poly(Lactic Acid) Chains. II. Theory. Macromolecules 1969, 2, 228–235. DOI: 10.1021/ma60009a003.
  • Musto, P.; La Manna, P.; Cimino, F.; Mensitieri, G.; Russo, P. Morphology, Molecular Interactions and H2O Diffusion in a Poly(Lactic-Acid)/Graphene Composite: A Vibrational Spectroscopy Study. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 218, 40–50. DOI: 10.1016/j.saa.2018.08.019.
  • Wilson, E. B. Some Mathematical Methods for the Study of Molecular Vibrations. J. Chem. Phys. 1941, 9, 76–84. DOI: 10.1063/1.1750829.
  • Allen, M. P.; Tildesley, D. J. Computer Simulation in Chemical Physics; Springer Science & Business Media: Dordrecht, Netherlands, 2012.
  • González, M. A. Force Fields and Molecular Dynamics Simulations. École thématique de la Société Française de la Neutronique 2011, 12, 169–200. DOI: 10.1051/sfn/201112009.
  • Abraham, M. J.; Spoel, D. V. D.; Lindahl, E.; Hess, B. The GROMACS Development Team GROMACS User Manual Version 2016. 2018.
  • Harrison, J. A.; Schall, J. D.; Maskey, S.; Mikulski, P. T.; Knippenberg, M. T.; Morrow, B. H. Review of Force Fields and Intermolecular Potentials Used in Atomistic Computational Materials Research. Appl. Phys. Rev. 2018, 5, 031104–031124. DOI: 10.1063/1.5020808.
  • Mackerell, A. D. Jr., Empirical Force Fields for Biological Macromolecules: Overview and Issues. J. Comput. Chem. 2004, 25, 1584–1604. DOI: 10.1002/jcc.20082.
  • Monticelli, L.; Tieleman, D. P. Force Fields for Classical Molecular Dynamics. In Biomolecular Simulations. Methods in Molecular Biology; Monticelli, L., Salonen, E., Eds.; Humana Press: Totowa, NJ, 2013; Vol. 924, pp 197–213.
  • Li, C.; Strachan, A. Molecular Scale Simulations on Thermoset Polymers: A Review. J. Polym. Sci. Part B: Polym. Phys. 2015, 53, 103–122. DOI: 10.1002/polb.23489.
  • Demerdash, O.; Yap, E.-H.; Head-Gordon, T. Advanced Potential Energy Surfaces for Condensed Phase Simulation. Annu. Rev. Phys. Chem. 2014, 65, 149–174. DOI: 10.1146/annurev-physchem-040412-110040.
  • Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217. DOI: 10.1002/jcc.540040211.
  • Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30, 1545–1614. DOI: 10.1002/jcc.21287.
  • Weiner, P. K.; Kollman, P. A. AMBER: Assisted Model Building with Energy Refinement. A General Program for Modeling Molecules and Their Interactions. J. Comput. Chem. 1981, 2, 287–303. DOI: 10.1002/jcc.540020311.
  • Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. DOI: 10.1021/ja00315a051.
  • Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. An All Atom Force Field for Simulations of Proteins and Nucleic Acids. J. Comput. Chem. 1986, 7, 230–252. DOI: 10.1002/jcc.540070216.
  • Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins. Nucleic Acids Organ Mol. 1995, 117, 5179–5197. DOI: 10.1021/ja00124a002.
  • Wang, J.; Cieplak, P.; Kollman, P. A. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules? J. Comput. Chem. 2000, 21, 1049–1074. DOI: 10.1002/1096-987X(200009)21:12 < 1049::AID-JCC3 > 3.0.CO;2-F.
  • Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Model. 2006, 25, 247–260. DOI: 10.1016/j.jmgm.2005.12.005.
  • Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. DOI: 10.1002/jcc.20035.
  • Van Gunsteren, W. F.; Berendsen, H. J. C. Groningen Molecular Simulation (GROMOS) Library Manual. Biomos: Netherlands, 1987.
  • Van Gunsteren, W. F.; Billeter, S. R.; Eising, A. A.; Hünenberger, P. H.; Krüger, P.; Mark, A. E.; Scott, W. R. P.; Tironi, I. G. Biomolecular Simulation: The GROMOS96 Manual and User Guide. Vdf Hochschulverlag AG an der ETH Zürich: Zürich, 1996.
  • Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force‐Field Parameter Sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676. DOI: 10.1002/jcc.20090.
  • Jorgensen, W. L. Transferable Intermolecular Potential Functions for Water, Alcohols, and Ethers. J. Am. Chem. Soc. 1981, 103, 335–340.
  • Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. Optimized Intermolecular Potential Functions for Liquid Hydrocarbons. J. Am. Chem. Soc. 1984, 106, 6638–6646. DOI: 10.1021/ja00334a030.
  • Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. DOI: 10.1021/ja9621760.
  • Sun, H. COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. DOI: 10.1021/jp980939v.
  • Sun, H. Ab Initio Characterizations of Molecular Structures, Conformation Energies, and Hydrogen-Bonding Properties for Polyurethane Hard Segments. Macromolecules 1993, 26, 5924–5936. DOI: 10.1021/ma00074a014.
  • Maple, J. R.; Hwang, M.-J.; Stockfisch, T. P.; Dinur, U.; Waldman, M.; Ewig, C. S.; Hagler, A. T. Derivation of Class II Force Fields. I. Methodology and Quantum Force Field for the Alkyl Functional Group and Alkane Molecules. J. Comput. Chem. 1994, 15, 162–182. DOI: 10.1002/jcc.540150207.
  • Hwang, M. J.; Stockfisch, T. P.; Hagler, A. T. Derivation of Class II Force Fields. 2. Derivation and Characterization of a Class II Force Field, CFF93, for the Alkyl Functional Group and Alkane Molecules. J. Am. Chem. Soc. 1994, 116, 2515–2525. DOI: 10.1021/ja00085a036.
  • Sun, H. Force Field for Computation of Conformational Energies, Structures, and Vibrational Frequencies of Aromatic Polyesters. J. Comput. Chem. 1994, 15, 752–768. DOI: 10.1002/jcc.540150708.
  • Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. An Ab Initio CFF93 All-Atom Force Field for Polycarbonates. J. Am. Chem. Soc. 1994, 116, 2978–2987. DOI: 10.1021/ja00086a030.
  • Sun, H. Ab Initio Calculations and Force Field Development for Computer Simulation of Polysilanes. Macromolecules 1995, 28, 701–712. DOI: 10.1021/ma00107a006.
  • Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. Ab Initio Calculations on Small Molecule Analogs of Polycarbonates. J. Phys. Chem. 1995, 99, 5873–5882. DOI: 10.1021/j100016a022.
  • Sun, H.; Rigby, D. Polysiloxanes: Ab Initio Force Field and Structural, Conformational and Thermophysical Properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 1997, 53, 1301–1323. DOI: 10.1016/S1386-1425(97)00013-9.
  • Peng, Z.; Ewig, C. S.; Hwang, M.-J.; Waldman, M.; Hagler, A. T. Derivation of Class II Force Fields 4. Van Der Waals Parameters of Alkali Metal Cations and Halide Anions. J. Phys. Chem. A 1997, 101, 7243–7252. DOI: 10.1021/jp964080y.
  • Lifson, S.; Warshel, A. Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and N‐Alkane Molecules. J. Chem. Phys. 1968, 49, 5116–5129. DOI: 10.1063/1.1670007.
  • Warshel, A.; Lifson, S. Consistent Force Field Calculations. II. Crystal Structures, Sublimation Energies, Molecular and Lattice Vibrations, Molecular Conformations, and Enthalpies of Alkanes. J. Chem. Phys. 1970, 53, 582–594. DOI: 10.1063/1.1674031.
  • MacKerell, A. D.; Feig, M.; Brooks, C. L. Improved Treatment of the Protein Backbone in Empirical Force Fields. J. Am. Chem. Soc. 2004, 126, 698–699. DOI: 10.1021/ja036959e.
  • Mackerell, A. D.; Jr., Feig, M.; Brooks, III, C. L. Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas‐Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem. 2004, 25, 1400–1415. DOI: 10.1002/jcc.20065.
  • Bjelkmar, P.; Larsson, P.; Cuendet, M. A.; Hess, B.; Lindahl, E. Implementation of the CHARMM Force Field in GROMACS: Analysis of Protein Stability Effects from Correction Maps, Virtual Interaction Sites, and Water Models. J. Chem. Theory Comput. 2010, 6, 459–466. DOI: 10.1021/ct900549r.
  • Blomqvist, J.; Mannfors, B.; Pietilä, L.-O. Amorphous Cell Studies of Polyglycolic, Poly(l-Lactic), Poly(l,d-Lactic) and Poly(Glycolic/l-Lactic) Acids. Polymer 2002, 43, 4571–4583. DOI: 10.1016/S0032-3861(02)00312-9.
  • Entrialgo-Castaño, M.; Lendlein, A.; Hofmann, D. Molecular Modeling Investigations of Dry and Two Water‐Swollen States of Biodegradable Polymers. Adv. Eng. Mater. 2006, 8, 434–439. DOI: 10.1002/adem.200600021.
  • Entrialgo-Castaño, M.; Salvucci, A. E.; Lendlein, A.; Hofmann, D. An Atomistic Modeling and Quantum Mechanical Approach to the Hydrolytic Degradation of Aliphatic Polyesters. Macromol. Symp. 2008, 269, 47–64. DOI: 10.1002/masy.200850908.
  • Hofmann, D.; Entrialgo-Castaño, M.; Kratz, K.; Lendlein, A. Knowledge‐Based Approach towards Hydrolytic Degradation of Polymer‐Based Biomaterials. Adv. Mater. 2009, 21, 3237–3245. DOI: 10.1002/adma.200802213.
  • Li, X.; Murthy, N. S.; Latour, R. A. Structure of Hydrated Poly(D,L-Lactic Acid) Studied with X-Ray Diffraction and Molecular Simulation Methods. Macromolecules 2012, 45, 4896–4906. DOI: 10.1021/ma3004778.
  • Xiang, H.; Wang, Y.; Yang, W.; Hu, C.; Mu, Y.; Li, J. Study of the Mechanical and Thermal Properties of Poly(Lactic Acid) and Poly(Ethylene Glycol) Block Copolymer with Molecular Dynamics. Int. J. Polym. Anal. Charact. 2010, 15, 235–244. DOI: 10.1080/10236661003746405.
  • Zhou, S.-Q.; Cheng, X.-C.; Jin, Y.-L.; Wu, J.; Zhao, D.-S. Molecular Dynamics Simulation on Interacting and Mechanical Properties of Polylactic Acid and Attapulgite(100) Surface. J. Appl. Polym. Sci. 2013, 128, 3043–3049. DOI: 10.1002/app.38492.
  • de Arenaza, I. M.; Meaurio, E.; Coto, B.; Sarasua, J.-R. Molecular Dynamics Modelling for the Analysis and Prediction of Miscibility in Polylactide/Polyvinilphenol Blends. Polymer 2010, 51, 4431–4438. DOI: 10.1016/j.polymer.2010.07.018.
  • Takhulee, A.; Takahashi, Y.; Vao-Soongnern, V. Molecular Simulation and Experimental Studies of the Miscibility of PLA/PLAx-PEGy-PLAx Blends. J. Polym. Res. 2017, 24, 178–1–10. DOI: 10.1007/s10965-017-1344-y.
  • Lin, C.; Liu, L.; Liu, Y.; Leng, J. The Compatibility of Polylactic Acid and Polybutylene Succinate Blends by Molecular and Mesoscopic Dynamics. Int. J. Smart Nano Mater. 2020, 11, 24–37. DOI: 10.1080/19475411.2020.1729274.
  • Ren, Z.; Guo, R.; Bi, H.; Jia, X.; Xu, M.; Cai, L. Interfacial Adhesion of Polylactic Acid on Cellulose Surface: A Molecular Dynamics Study. ACS Appl. Mater. Interfaces 2020, 12, 3236–3244. DOI: 10.1021/acsami.9b20101.
  • Gautieri, A.; Mezzanzanica, A.; Motta, A.; Redealli, A.; Vesentini, S. Atomistic Modeling of Water Diffusion in Hydrolytic Biomaterials. J. Mol. Model. 2012, 18, 1495–1502. DOI: 10.1007/s00894-011-1176-3.
  • Sun, D.; Zhou, J. Molecular Simulation of Oxygen Sorption and Diffusion in the Poly (Lactic Acid). Chin. J. Chem. Eng. 2013, 21, 301–309. DOI: 10.1016/S1004-9541(13)60472-7.
  • Ghobadi, E.; Heuchel, M.; Kratz, K.; Lendlein, A. Influence of Different Heating Regimes on the Shape-Recovery Behavior of Poly(L-Lactide) in Simulated Thermomechanical Tests. J. Appl. Biomater. Funct. Mater. 2012, 10, 259–264. DOI: 10.5301/JABFM.2012.10440.
  • Ghobadi, E.; Heuchel, M.; Kratz, K.; Lendlein, A. Simulating the Shape‐Memory Behavior of Amorphous Switching Domains of Poly(L‐Lactide) by Molecular Dynamics. Macromol. Chem. Phys. 2013, 214, 1273–1283. DOI: 10.1002/macp.201200450.
  • Ghobadi, E.; Heuchel, M.; Kratz, K.; Lendlein, A. Influence of the Addition of Water to Amorphous Switching Domains on the Simulated Shape-Memory Properties of Poly(L-Lactide). Polymer 2013, 54, 4204–4211. DOI: 10.1016/j.polymer.2013.05.064.
  • Ghobadi, E.; Heuchel, M.; Kratz, K.; Lendlein, A. Atomistic Simulation of the Shape‐Memory Effect in Dry and Water Swollen Poly[(Rac‐Lactide)‐co‐Glycolide] and Copolyester Urethanes Thereof. Macromol. Chem. Phys. 2014, 215, 65–75. DOI: 10.1002/macp.201300507.
  • O’Brien, C. P. Quantum and Molecular Modeling of Polylactide. Ph.D. Dissertation, Clemson University, Clemson, SC, 2005.
  • Mcaliley, J. Development of Improved Torsional Potentials in Classical Force Field Models of Poly (Lactic Acid). Ph.D. Dissertation, Clemson University, Clemson, SC, 2009.
  • O'Brien, C. P.; Stuart, S. J.; Bruce, D. A.; Latour, R. A. Modeling of Peptide Adsorption Interactions with a Poly(Lactic Acid) Surface. Langmuir 2008, 24, 14115–14124. DOI: 10.1021/la802588n.
  • Zhang, J.; Liang, Y.; Yan, J.; Lou, J. Study of the Molecular Weight Dependence of Glass Transition Temperature for Amorphous Poly(L-Lactide) by Molecular Dynamics Simulation. Polymer 2007, 48, 4900–4905. DOI: 10.1016/j.polymer.2007.06.030.
  • Zhang, J.; Lou, J.; Ilias, S.; Krishnamachari, P.; Yan, J. Thermal Properties of Poly(Lactic Acid) Fumed Silica Nanocomposites: Experiments and Molecular Dynamics Simulations. Polymer 2008, 49, 2381–2386. DOI: 10.1016/j.polymer.2008.02.048.
  • Glova, A. D.; Falkovich, S. G.; Larin, S. V.; Mezhenskaia, D. A.; Lukasheva, N. V.; Nazarychev, V. M.; Tolmachev, D. A.; Mercurieva, A. A.; Kenny, J. M.; Lyulin, S. V. Poly(Lactic Acid)‐Based Nanocomposites Filled with Cellulose Nanocrystals with Modified Surface: All‐Atom Molecular Dynamics Simulations. Polym. Int. 2016, 65, 892–898. DOI: 10.1002/pi.5102.
  • Glova, A. D.; Larin, S. V.; Falkovich, S. G.; Nazarychev, V. M.; Tolmachev, D. A.; Lukasheva, N. V.; Lyulin, S. V. Molecular Dynamics Simulations of Oligoester Brushes: The Origin of Unusual Conformations. Soft Matter. 2017, 13, 6627–6638. DOI: 10.1039/C7SM01419H.
  • Prasitnok, K. A Coarse-Grained Model for Polylactide: Glass Transition Temperature and Conformational Properties. J. Polym. Res. 2016, 23, 139–1–9. DOI: 10.1007/s10965-016-1037-y.
  • Prasitnok, K. Coarse-Grained Modelling of Self-Assembling Poly(Ethylene Glycol)/Poly(Lactic Acid) Diblock Copolymers. J. Polym. Res. 2018, 25, 69–1–9. DOI: 10.1007/s10965-018-1457-y.
  • Glagolev, M. K.; Vasilevskaya, V. V. Reverse Mapping Algorithm for Multi-Scale Numerical Simulation of Polylactic Acid. Supercomput. Front. Innov. 2018, 5, 103–106. DOI: 10.14529/jsfi180319.
  • Glagolev, M.; Glova, A.; Mezhenskaia, D.; Falkovich, S.; Larin, S.; Vasilevskaya, V.; Lyulin, S. Coarse‐Grained A‐Graft‐B Model of Poly(Lactic Acid) for Molecular Dynamics Simulations. J. Polym. Sci. Part B: Polym. Phys. 2018, 56, 604–612. DOI: 10.1002/polb.24567.
  • Glagolev, M. K.; Vasilevskaya, V. V. Coarse-Grained Simulation of Molecular Ordering in Polylactic Blends under Uniaxial Strain. Polymer 2020, 190, 122232–122210. DOI: 10.1016/j.polymer.2020.122232.
  • Alex, A.; Ilango, N. K.; Ghosh, P. Comparative Role of Chain Scission and Solvation in the Biodegradation of Polylactic Acid (PLA). J. Phys. Chem. B 2018, 122, 9516–9526. DOI: 10.1021/acs.jpcb.8b07930.
  • Wang, X.; Li, J.; Zhang, L. Understanding Self-Accelerated Water Diffusion within Poly-Lactic Acid via Molecular Dynamics Simulation. Chin. J. Chem. Eng. 2019, 27, 759–764. DOI: 10.1016/j.cjche.2018.09.009.
  • Zhao, Z.-J.; Wang, Q.; Zhang, L.; Liu, Y.-C. A Different Diffusion Mechanism for Drug Molecules in Amorphous Polymers. J. Phys. Chem. B 2007, 111, 4411–4416. DOI: 10.1021/jp0673718.
  • Zhao, Z.-J.; Wang, Q.; Zhang, L. Size Effect on Competition of Two Diffusion Mechanisms for Drug Molecules in Amorphous Polymers. J. Phys. Chem. B 2007, 111, 13167–13172. DOI: 10.1021/jp074733i.
  • Sasaki, S.; Asakura, T. Helix Distortion and Crystal Structure of the α-Form of Poly(L-Lactide). Macromolecules 2003, 36, 8385–8390. DOI: 10.1021/ma0348674.
  • Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. DOI: 10.1063/1.445869.
  • Fox, T. G., Jr.; Flory, P. J. Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight. J. Appl. Phys. 1950, 21, 581–591. DOI: 10.1063/1.1699711.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. Gaussian 09; Gaussian, Inc.: Wallingford, CT, 2009.
  • Yang, X.; Kang, S.; Hsu, S. L.; Stidham, H. D.; Smith, P. B.; Leugers, A. A Spectroscopic Analysis of Chain Flexibility of Poly(Lactic Acid). Macromolecules 2001, 34, 5037–5041. DOI: 10.1021/ma001969a.
  • Kang, S.; Hsu, S. L.; Stidham, H. D.; Smith, P. B.; Leugers, M. A.; Yang, X. A Spectroscopic Analysis of Poly(Lactic Acid) Structure. Macromolecules 2001, 34, 4542–4548. DOI: 10.1021/ma0016026.
  • Kang, S.; Zhang, G.; Aou, K.; Hsu, S. L.; Stidham, H. D.; Yang, X. An Analysis of Poly(Lactic Acid) with Varying Regio Regularity. J. Chem. Phys. 2003, 118, 3430–3436. DOI: 10.1063/1.1538253.
  • Guseva, D. V.; Komarov, P. V.; Lyulin, A. V. Molecular-Dynamics Simulations of Thin Polyisoprene Films Confined between Amorphous Silica Substrates. J. Chem. Phys. 2014, 140, 114903–114914. DOI: 10.1063/1.4868231.
  • Wittmer, J. P.; Meyer, H.; Baschnagel, J.; Johner, A.; Obukhov, S.; Mattioni, L.; Müller, M.; Semenov, A. N. Long Range Bond-Bond Correlations in Dense Polymer Solutions. Phys. Rev. Lett. 2004, 93, 147801–147804. DOI: 10.1103/PhysRevLett.93.147801.
  • Wittmer, J. P.; Beckrich, P.; Meyer, H.; Cavallo, A.; Johner, A.; Baschnagel, J. Intramolecular Long-Range Correlations in Polymer Melts: The Segmental Size Distribution and Its Moments. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2007, 76, 011803–011818. DOI: 10.1103/PhysRevE.76.011803.
  • Tonelli, A. E.; Flory, P. J. The Configurational Statistics of Random Poly (Lactic Acid) Chains. II. Theory. Macromolecules 1969, 2, 225–227. DOI: 10.1021/ma60009a002.
  • Schindler, A.; Harper, D. Polylactide. II. Viscosity–Molecular Weight Relationships and Unperturbed Chain Dimensions. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 2593–2599. DOI: 10.1002/pol.1979.170170831.
  • Grijpma, D. W.; Penning, J. P.; Pennings, A. J. Chain Entanglement, Mechanical Properties and Drawability of Poly(Lactide). Colloid Polym. Sci. 1994, 272, 1068–1081. DOI: 10.1007/BF00652375.
  • Joziasse, C. A. P.; Veenstra, H.; Grijpma, D. W.; Pennings, A. J. On the Chain Stiffness of Poly(Lactide)s. Macromol. Chem. Phys. 1996, 197, 2219–2229. DOI: 10.1002/macp.1996.021970713.
  • Dorgan, J. R.; Janzen, J.; Knauss, D. M.; Hait, S. B.; Limoges, B. R.; Hutchinson, M. H. Fundamental Solution and Single‐Chain Properties of Polylactides. J. Polym. Sci. B Polym. Phys. 2005, 43, 3100–3111. DOI: 10.1002/polb.20577.
  • Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(Lactic Acid) Crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677. DOI: 10.1016/j.progpolymsci.2012.07.005.
  • Jamshidi, K.; Hyon, S.-H.; Ikada, Y. Thermal Characterization of Polylactides. Polymer 1988, 29, 2229–2234. DOI: 10.1016/0032-3861(88)90116-4.
  • Abe, H.; Kikkawa, Y.; Inoue, Y.; Doi, Y. Morphological and Kinetic Analyses of Regime Transition for Poly[(S)-Lactide] Crystal Growth. Biomacromolecules 2001, 2, 1007–1014. DOI: 10.1021/bm015543v.
  • Dorgan, J. R.; Janzen, J.; Clayton, M. P.; Hait, S. B.; Knauss, D. M. Melt Rheology of Variable L-Content Poly(Lactic Acid). J. Rheol. 2005, 49, 607–619. DOI: 10.1122/1.1896957.
  • Urayama, H.; Moon, S.-I.; Kimura, Y. Microstructure and Thermal Properties of Polylactides with Different L- and D-Unit Sequences: Importance of the Helical Nature of the L-Sequenced Segments. Macromol. Mat. Eng. 2003, 288, 137–143. DOI: 10.1002/mame.200390006.
  • Williams, M. L.; Landel, R. F.; Ferry, J. D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. DOI: 10.1021/ja01619a008.
  • Soldera, A.; Metatla, N. Glass Transition of Polymers: Atomistic Simulation versus Experiments. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006, 74, 061803–061806. DOI: 10.1103/PhysRevE.74.061803.
  • Dorgan, J. R.; Lehermeier, H.; Mang, M. Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s. J. Polym. Environ. 2000, 8, 1–9. DOI: 10.1023/A:1010185910301.
  • Sato, Y.; Inohara, K.; Takishima, S.; Masuoka, H.; Imaizumi, M.; Yamamoto, H.; Takasugi, M. Pressure-Volume-Temperature Behavior of Polylactide, Poly(Butylene Succinate), and Poly(Butylene Succinate-Co-Adipate). Polym. Eng. Sci. 2000, 40, 2602–2609. DOI: 10.1002/pen.11390.
  • Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4, 835–864. DOI: 10.1002/mabi.200400043.
  • Kanchanasopa, M.; Runt, J. Broadband Dielectric Investigation of Amorphous and Semicrystalline L-Lactide/Meso-Lactide Copolymers. Macromolecules 2004, 37, 863–871. DOI: 10.1021/ma035597s.
  • Li, X.; Latour, R. A.; Stuart, S. J. TIGER2: An Improved Algorithm for Temperature Intervals with Global Exchange of Replicas. J. Chem. Phys. 2009, 130, 174106–174109. DOI: 10.1063/1.3129342.
  • Li, X.; Murthy, N. S.; Latour, R. A. Construction and Validation of All-Atom Bulk-Phase Models of Amorphous Polymers Using the TIGER2/TIGER3 Empirical Sampling Method. Macromolecules 2011, 44, 5452–5464. DOI: 10.1021/ma200128c.
  • Li, X.; Latour, R. A. A Systematic Procedure to Build a Relaxed Dense-Phase Atomistic Representation of a Complex Amorphous Polymer Using a Coarse-Grained Modeling Approach. Polymer (Guildf) 2009, 50, 4139–4149. DOI: 10.1016/j.polymer.2009.06.055.
  • Eringen, A. C. Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves. Int. J. Eng. Sci. 1972, 10, 425–435. DOI: 10.1016/0020-7225(72)90050-X.
  • Eringen, A. C. On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves. J. Appl. Phys. 1983, 54, 4703–4710. DOI: 10.1063/1.332803.
  • Li, X.; Xiao, T.; Xiao, N. The Application of Nonlocal Theory Method in the Coarse-Grained Molecular Dynamics Simulations of Long-Chain Polylactic Acid. Acta Mech. Solida Sin. 2017, 30, 630–637. DOI: 10.1016/j.camss.2017.10.003.
  • Marrink, S. J.; de Vries, A. H.; Mark, A. E. Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B 2004, 108, 750–760. DOI: 10.1021/jp036508g.
  • Alharbi, M.; Kong, I.; Patel, V. I. Simulation of Uniaxial Stress–Strain Response of 3D-Printed Polylactic Acid by Nonlinear Finite Element Analysis. Appl. Adhes. Sci. 2020, 8, 5–1–10. DOI: 10.1186/s40563-020-00128-1.
  • Zhou, X.; Hsieh, S.-J.; Ting, C.-C. Modelling and Estimation of Tensile Behaviour of Polylactic Acid Parts Manufactured by Fused Deposition Modelling Using Finite Element Analysis and Knowledge-Based Library. Virtual Phys. Prototyping 2018, 13, 177–190. DOI: 10.1080/17452759.2018.1442681.
  • Al-Behadili, A. J. M.; Bedaiwi, B. O. Measurement of Absorbed Energy of the Polylactic Acid (PLA) via Numerical Simulation. J. Mech. Eng. Res. Dev. 2020, 43, 428–435.
  • Mirkhalaf, S. M.; Fagerström, M. The Mechanical Behavior of Polylactic Acid (PLA) Films: Fabrication, Experiments and Modelling. Mech. Time-Depend. Mater. 2021, 25, 119–131. DOI: 10.1007/s11043-019-09429-w.
  • Español, P.; Warren, P. Statistical Mechanics of Dissipative Particle Dynamics. Europhys. Lett. 1995, 30, 191–196. DOI: 10.1209/0295-5075/30/4/001.
  • Groot, R. D.; Rabone, K. L. Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants. Biophys. J. 2001, 81, 725–736. DOI: 10.1016/S0006-3495(01)75737-2.
  • Groot, R. D.; Warren, P. B. Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation. J. Chem. Phys. 1997, 107, 4423–4435. DOI: 10.1063/1.474784.
  • Maiti, A.; McGrother, S. Bead–Bead Interaction Parameters in Dissipative Particle Dynamics: Relation to Bead-Size, Solubility Parameter, and Surface Tension. J. Chem. Phys. 2004, 120, 1594–1601. DOI: 10.1063/1.1630294.
  • Lee, W.-J.; Ju, S.-P.; Wang, Y.-C.; Chang, J.-G. Modeling of Polyethylene and Poly (L-Lactide) Polymer Blends and Diblock Copolymer: Chain Length and Volume Fraction Effects on Structural Arrangement. J. Chem. Phys. 2007, 127, 064902–064911. DOI: 10.1063/1.2751498.
  • Levitt, M.; Hirshberg, M.; Sharon, R.; Daggett, V. Potential Energy Function and Parameters for Simulations of the Molecular Dynamics of Proteins and Nucleic Acids in Solution. Comput. Phys. Commun. 1995, 91, 215–231. DOI: 10.1016/0010-4655(95)00049-L.
  • Wang, Y.-C.; Lee, W.-J.; Ju, S.-P. Modeling of the Polyethylene and Poly(L-Lactide) Triblock Copolymer: A Dissipative Particle Dynamics Study. J. Chem. Phys. 2009, 131, 124901–124910. DOI: 10.1063/1.3216552.
  • Megy, S.; Aguero, S.; Da Costa, D.; Lamrayah, M.; Berthet, M.; Primard, C.; Verrier, B.; Terreux, R. Molecular Dynamics Studies of Poly(Lactic Acid) Nanoparticles and Their Interactions with Vitamin E and TLR Agonists Pam1CSK4 and Pam3CSK4. Nanomaterials 2020, 10, 2209–2218. DOI: 10.3390/nano10112209.
  • Kuru, M. M.; Dalgakiran, E. A.; Kacar, G. Investigation of Morphology, Micelle Properties, Drug Encapsulation and Release Behavior of Self-Assembled PEG-PLA-PEG Block Copolymers: A Coarse-Grained Molecular Simulations Study. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 629, 127445–127415. DOI: 10.1016/j.colsurfa.2021.127445.
  • Mark, P.; Nilsson, L. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. DOI: 10.1021/jp003020w.
  • Keith, J. A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, K.-R.; Tkatchenko, A. Combining Machine Learning and Computational Chemistry for Predictive Insights into Chemical Systems. Chem. Rev. 2021, 121, 9816–9872. DOI: 10.1021/acs.chemrev.1c00107.
  • Ye, H.; Xian, W.; Li, Y. Machine Learning of Coarse-Grained Models for Organic Molecules and Polymers: Progress, Opportunities, and Challenges. ACS Omega 2021, 6, 1758–1772. DOI: 10.1021/acsomega.0c05321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.