506
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Natural Terpenoid-Based Sustainable Thermoplastics, Cross-Linked Polymers, and Supramolecular Materials

, , & ORCID Icon
Pages 119-161 | Received 28 Nov 2022, Accepted 24 Apr 2023, Published online: 09 May 2023

References

  • Zhu, Y. Q.; Romain, C.; Williams, C. K. Sustainable Polymers from Renewable Resources. Nature. 2016, 540, 354–362. DOI: 10.1038/nature21001.
  • Lin, P. C.; Pakrasi, H. B. Engineering Cyanobacteria for Production of Terpenoids. Planta. 2019, 249, 145–154. DOI: 10.1007/s00425-018-3047-y.
  • Tetali, S. D. Terpenes and Isoprenoids: A Wealth of Compounds for Global Use. Planta. 2019, 249, 1–8. DOI: 10.1007/s00425-018-3056-x.
  • Singh, B.; Sharma, R. A. Plant Terpenes: Defense Responses, Phylogenetic Analysis, Regulation and Clinical Applications. 3 Biotech. 2015, 5, 129–151. DOI: 10.1007/s13205-014-0220-2.
  • Kokkiripati, P. K.; Kamsala, R. V.; Bashyam, L.; Manthapuram, N.; Bitla, P.; Peddada, V.; Raghavendra, A. S.; Tetali, S. D. Stem-Bark of Terminalia Arjuna Attenuates Human Monocytic (Thp-1) and Aortic Endothelial Cell Activation. J. Ethnopharmacol. 2013, 146, 456–464. DOI: 10.1016/j.jep.2012.12.050.
  • Zhao, D. D.; Jiang, L. L.; Li, H. Y.; Yan, P. F.; Zhang, Y. L. Chemical Components and Pharmacological Activities of Terpene Natural Products from the Genus Paeonia. Molecules. 2016, 21, 1362. DOI: 10.3390/molecules21101362.
  • Gershenzon, J.; Dudareva, N. The Function of Terpene Natural Products in the Natural World. Nat. Chem. Biol. 2007, 3, 408–414. DOI: 10.1038/nchembio.2007.5.
  • Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils – A Review. Food Chem. Toxicol. 2008, 46, 446–475. DOI: 10.1016/j.fct.2007.09.106.
  • Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines (Basel). 2015, 2, 251–286. DOI: 10.3390/medicines2030251.
  • Heil, M.; Karban, R. Explaining Evolution of Plant Communication by Airborne Signals. Trends Ecol. Evol. 2010, 25, 137–144. DOI: 10.1016/j.tree.2009.09.010.
  • Kutyna, D. R.; Borneman, A. R. Heterologous Production of Flavour and Aroma Compounds in Saccharomyces Cerevisiae. Genes. 2018, 9, 326. DOI: 10.3390/genes9070326.
  • Martin, V. J. J.; Pitera, D. J.; Withers, S. T.; Newman, J. D.; Keasling, J. D. Engineering a Mevalonate Pathway in Escherichia coli for Production of Terpenoids. Nat. Biotechnol. 2003, 21, 796–802. DOI: 10.1038/nbt833.
  • Aharoni, A.; Jongsma, M. A.; Bouwmeester, H. J. Volatile Science? Metabolic Engineering of Terpenoids in Plants. Trends Plant Sci. 2005, 10, 594–602. DOI: 10.1016/j.tplants.2005.10.005.
  • Pichersky, E.; Gershenzon, J. The Formation and Function of Plant Volatiles: Perfumes for Pollinator Attraction and Defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. DOI: 10.1016/S1369-5266(02)00251-0.
  • Jennewein, S.; Croteau, R. Taxol: Biosynthesis, Molecular Genetics, and Biotechnological Applications. Appl. Microbiol. Biotechnol. 2001, 57, 13–19. DOI: 10.1007/s002530100757.
  • Tippmann, S.; Chen, Y.; Siewers, V.; Nielsen, J. From Flavors and Pharmaceuticals to Advanced Biofuels: Production of Isoprenoids in Saccharomyces Cerevisiae. Biotechnol. J. 2013, 8, 1435–1444. DOI: 10.1002/biot.201300028.
  • Winnacker, M. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers. Angew. Chem. Int. Ed. Engl. 2018, 57, 14362–14371. DOI: 10.1002/anie.201804009.
  • Bailer, J.; Feth, S.; Bretschneider, F.; Rosenfeldt, S.; Drechsler, M.; Abetz, V.; Schmalz, H.; Greiner, A. Synthesis and Self-Assembly of Biobased Poly(Limonene Carbonate)-Block-Poly(Cyclohexene Carbonate) Diblock Copolymers Prepared by Sequential Ring-Opening Copolymerization. Green Chem. 2019, 21, 2266–2272. DOI: 10.1039/C9GC00250B.
  • Winnacker, M.; Rieger, B. Recent Progress in Sustainable Polymers Obtained from Cyclic Terpenes: Synthesis, Properties, and Application Potential. ChemSusChem. 2015, 8, 2455–2471. DOI: 10.1002/cssc.201500421.
  • R., T. M.; E., S. T.; R., M. O.; A., S. R.; M., H. S. Progress in the Synthesis of Sustainable Polymers from Terpenes and Terpenoids. Green Mater. 2016, 4, 115–134. DOI: 10.1680/jgrma.16.00009.
  • Coates, G. W.; Hillmyer, M. A. A Virtual Issue of Macromolecules: “Polymers from Renewable Resources”. Macromolecules. 2009, 42, 7987–7989. DOI: 10.1021/ma902107w.
  • Hauenstein, O.; Rahman, M. M.; Elsayed, M.; Krause-Rehberg, R.; Agarwal, S.; Abetz, V.; Greiner, A. Biobased Polycarbonate as a Gas Separation Membrane and “Breathing Glass” for Energy Saving Applications. Adv. Mater. Technol. 2017, 2, 1700026. DOI: 10.1002/admt.201700026.
  • Chen, Y.; Song, Q.; Zhao, J.; Gong, X.; Schlaad, H.; Zhang, G. Betulin-Constituted Multiblock Amphiphiles for Broad-Spectrum Protein Resistance. ACS Appl. Mater. Interfaces. 2018, 10, 6593–6600. DOI: 10.1021/acsami.7b16255.
  • Wei, Z.; Wang, W.; Zhou, C.; Jin, C.; Leng, X.; Li, Y.; Zhang, X.; Chen, S.; Zhang, B.; Yang, K. In Vitro Degradation and Biocompatibility Evaluation of Fully Biobased Thermoplastic Elastomers Consisting of Poly(β-Myrcene) and Poly(L-Lactide) as Stent Coating. Polym. Degrad. Stab. 2020, 179, 109254. DOI: 10.1016/j.polymdegradstab.2020.109254.
  • Zhao, Z.-H.; Wang, D.-P.; Li, C.-H.; Zuo, J.-L. Pinene-Functionalized Polysiloxane as an Excellent Self-Healing Superhydrophobic Polymer. Macromol. Chem. Phys. 2019, 220, 1900361. DOI: 10.1002/macp.201900361.
  • Wilbon, P. A.; Chu, F.; Tang, C. Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromol Rapid Commun. 2013, 34, 8–37. DOI: 10.1002/marc.201200513.
  • Stockmann, P. N.; Pastoetter, D. L.; Woelbing, M.; Falcke, C.; Winnacker, M.; Strittmatter, H.; Sieber, V. New Bio-Polyamides from Terpenes: α-Pinene and (+)-3-Carene as Valuable Resources for Lactam Production. Macromol. Rapid Commun. 2019, 40, 1800903. DOI: 10.1002/marc.201800903.
  • Stockmann, P. N.; Van Opdenbosch, D.; Poethig, A.; Pastoetter, D. L.; Hoehenberger, M.; Lessig, S.; Raab, J.; Woelbing, M.; Falcke, C.; Winnacker, M.; et al. Biobased Chiral Semi-Crystalline or Amorphous High-Performance Polyamides and Their Scalable Stereoselective Synthesis. Nat. Commun. 2020, 11, 509. DOI: 10.1038/s41467-020-14361-6.
  • Roberts, W. J.; Day, A. R. A Study of the Polymerization of α- and β-Pinene with Friedel—Crafts Type Catalysts. J. Am. Chem. Soc. 1950, 72, 1226–1230. DOI: 10.1021/ja01159a044.
  • Satoh, K.; Sugiyama, H.; Kamigaito, M. Biomass-Derived Heat-Resistant Alicyclic Hydrocarbon Polymers: Poly(Terpenes) and Their Hydrogenated Derivatives. Green Chem. 2006, 8, 878–882. DOI: 10.1039/b607789g.
  • Satoh, K.; Nakahara, A.; Mukunoki, K.; Sugiyama, H.; Saito, H.; Kamigaito, M. Sustainable Cycloolefin Polymer from Pine Tree Oil for Optoelectronics Material: Living Cationic Polymerization of β-Pinene and Catalytic Hydrogenation of High-Molecular-Weight Hydrogenated Poly(β-Pinene). Polym. Chem. 2014, 5, 3222–3230. DOI: 10.1039/C3PY01320K.
  • Fried, A. D.; Brantley, J. N. Controlled Polymerization of β-Pinadiene: Accessing Unusual Polymer Architectures with Biomass-Derived Monomers. ACS Macro. Lett. 2020, 9, 595–599. DOI: 10.1021/acsmacrolett.0c00229.
  • Keszler, B.; Kennedy, J. P. Synthesis of High Molecular Weight Poly (β-Pinene). In Macromolecules: Synthesis, Order and Advanced Properties, Springer Berlin Heidelberg: Berlin, Heidelberg, 1992; pp. 1–9. DOI: 10.1007/BFb0051633.
  • Kukhta, N. A.; Vasilenko, I. V.; Kostjuk, S. V. Room Temperature Cationic Polymerization of β-Pinene Using Modified Alcl3 Catalyst: Toward Sustainable Plastics from Renewable Biomass Resources. Green Chem. 2011, 13, 2362–2364. DOI: 10.1039/c1gc15593h.
  • Yu, P.; Li, A.-L.; Liang, H.; Lu, J. Polymerization of β-Pinene with Schiff-Base Nickel Complexes Catalyst: Synthesis of Relatively High Molecular Weight Poly(β-Pinene) at High Temperature with High Productivity. J. Polym. Sci. A Polym. Chem. 2007, 45, 3739–3746. DOI: 10.1002/pola.22124.
  • Liu, Z.; Zhang, T.; Zeng, W.; Zhu, H.; An, X. Cationic Polymerization of α-Pinene Using Keggin Silicotungstic Acid as a Homogeneous Catalyst. Reac. Kinet. Mech. Cat. 2011, 104, 125–137. DOI: 10.1007/s11144-011-0333-0.
  • Liu, S.; Zhou, L.; Yu, S.; Xie, C.; Liu, F.; Song, Z. Polymerization of α-Pinene Using Lewis Acidic Ionic Liquid as Catalyst for Production of Terpene Resin. Biomass Bioenergy. 2013, 57, 238–242. DOI: 10.1016/j.biombioe.2013.06.005.
  • Park, H. J.; Ryu, C. Y.; Crivello, J. V. Photoinitiated Cationic Polymerization of Limonene 1,2-Oxide and α-Pinene Oxide. J. Polym. Sci. A Polym. Chem. 2013, 51, 109–117. DOI: 10.1002/pola.26280.
  • Thomas, C. M. Stereocontrolled Ring-Opening Polymerization of Cyclic Esters: Synthesis of New Polyester Microstructures. Chem. Soc. Rev. 2010, 39, 165–173. DOI: 10.1039/B810065A.
  • Nsengiyumva, O.; Miller, S. A. Synthesis, Characterization, and Water-Degradation of Biorenewable Polyesters Derived from Natural Camphoric Acid. Green Chem. 2019, 21, 973–978. DOI: 10.1039/C8GC03990A.
  • Pang, C.; Jiang, X.; Yu, Y.; Chen, L.; Ma, J.; Gao, H. Copolymerization of Natural Camphor-Derived Rigid Diol with Various Dicarboxylic Acids: Access to Biobased Polyesters with Various Properties. ACS Macro Lett. 2019, 8, 1442–1448. DOI: 10.1021/acsmacrolett.9b00570.
  • Jiang, X.; Yu, Y.; Guan, Y.; Liu, T.; Pang, C.; Ma, J.; Gao, H. Random and Multiblock Pbs Copolyesters Based on a Rigid Diol Derived from Naturally Occurring Camphor: Influence of Chemical Microstructure on Thermal and Mechanical Properties. ACS Sustain. Chem. Eng. 2020, 8, 3626–3636. DOI: 10.1021/acssuschemeng.9b06326.
  • Firdaus, M.; Montero de Espinosa, L.; Meier, M. A. R. Terpene-Based Renewable Monomers and Polymers via Thiol–Ene Additions. Macromolecules. 2011, 44, 7253–7262. DOI: 10.1021/ma201544e.
  • Busch, H.; Stempfle, F.; Heß, S.; Grau, E.; Mecking, S. Selective Isomerization–Carbonylation of a Terpene Trisubstituted Double Bond. Green Chem. 2014, 16, 4541–4545. DOI: 10.1039/C4GC01233J.
  • Niewolik, D.; Krukiewicz, K.; Bednarczyk-Cwynar, B.; Ruszkowski, P.; Jaszcz, K. Novel Polymeric Derivatives of Betulin with Anticancer Activity. RSC Adv. 2019, 9, 20892–20900. DOI: 10.1039/C9RA03326B.
  • Jeromenok, J.; Böhlmann, W.; Antonietti, M.; Weber, J. Intrinsically Microporous Polyesters from Betulin – Toward Renewable Materials for Gas Separation Made from Birch Bark. Macromol Rapid Commun. 2011, 32, 1846–1851. DOI: 10.1002/marc.201100532.
  • Park, J. E.; Hwang, D. Y.; Choi, G. H.; Choi, K. H.; Suh, D. H. Fast Hydrolysis Polyesters with a Rigid Cyclic Diol from Camphor. Biomacromolecules. 2017, 18, 2633–2639. DOI: 10.1021/acs.biomac.7b00761.
  • Zhang, D.; Hillmyer, M. A.; Tolman, W. B. Catalytic Polymerization of a Cyclic Ester Derived from a “Cool” Natural Precursor. Biomacromolecules. 2005, 6, 2091–2095. DOI: 10.1021/bm050076t.
  • Lowe, J. R.; Martello, M. T.; Tolman, W. B.; Hillmyer, M. A. Functional Biorenewable Polyesters from Carvone-Derived Lactones. Polym. Chem. 2011, 2, 702–708. DOI: 10.1039/C0PY00283F.
  • Stamm, A.; Biundo, A.; Schmidt, B.; Brücher, J.; Lundmark, S.; Olsén, P.; Fogelström, L.; Malmström, E.; Bornscheuer, U. T.; Syrén, P.-O. A Retro-Biosynthesis-Based Route to Generate Pinene-Derived Polyesters. ChemBioChem. 2019, 20, 1664–1671. DOI: 10.1002/cbic.201900046.
  • Quilter, H. C.; Hutchby, M.; Davidson, M. G.; Jones, M. D. Polymerisation of a Terpene-Derived Lactone: A Bio-Based Alternative to ε-Caprolactone. Polym. Chem. 2017, 8, 833–837. DOI: 10.1039/C6PY02033J.
  • Jeske, R. C.; DiCiccio, A. M.; Coates, G. W. Alternating Copolymerization of Epoxides and Cyclic Anhydrides: An Improved Route to Aliphatic Polyesters. J. Am. Chem. Soc. 2007, 129, 11330–11331. DOI: 10.1021/ja0737568.
  • Robert, C.; de Montigny, F.; Thomas, C. M. Tandem Synthesis of Alternating Polyesters from Renewable Resources. Nat. Commun. 2011, 2, 586. DOI: 10.1038/ncomms1596.
  • Van Zee, N. J.; Coates, G. W. Alternating Copolymerization of Propylene Oxide with Biorenewable Terpene-Based Cyclic Anhydrides: A Sustainable Route to Aliphatic Polyesters with High Glass Transition Temperatures. Angew. Chem. Int. Ed. Engl. 2015, 54, 2665–2668. DOI: 10.1002/anie.201410641.
  • Nejad, E. H.; Paoniasari, A.; van Melis, C. G. W.; Koning, C. E.; Duchateau, R. Catalytic Ring-Opening Copolymerization of Limonene Oxide and Phthalic Anhydride: Toward Partially Renewable Polyesters. Macromolecules. 2013, 46, 631–637. DOI: 10.1021/ma301904y.
  • Peña Carrodeguas, L.; Martín, C.; Kleij, A. W. Semiaromatic Polyesters Derived from Renewable Terpene Oxides with High Glass Transitions. Macromolecules. 2017, 50, 5337–5345. DOI: 10.1021/acs.macromol.7b00862.
  • Martín, C.; Kleij, A. W. Terpolymers Derived from Limonene Oxide and Carbon Dioxide: Access to Cross-Linked Polycarbonates with Improved Thermal Properties. Macromolecules. 2016, 49, 6285–6295. DOI: 10.1021/acs.macromol.6b01449.
  • Van Zee, N. J.; Sanford, M. J.; Coates, G. W. Electronic Effects of Aluminum Complexes in the Copolymerization of Propylene Oxide with Tricyclic Anhydrides: Access to Well-Defined, Functionalizable Aliphatic Polyesters. J. Am. Chem. Soc. 2016, 138, 2755–2761. DOI: 10.1021/jacs.5b12888.
  • Winnacker, M.; Vagin, S.; Auer, V.; Rieger, B. Synthesis of Novel Sustainable Oligoamides via Ring-Opening Polymerization of Lactams Based on (−)-Menthone. Macromol. Chem. Phys. 2014, 215, 1654–1660. DOI: 10.1002/macp.201400324.
  • Winnacker, M.; Tischner, A.; Neumeier, M.; Rieger, B. New Insights into Synthesis and Oligomerization of ε-Lactams Derived from the Terpenoid Ketone (−)-Menthone. RSC Adv. 2015, 5, 77699–77705. DOI: 10.1039/C5RA15656D.
  • Winnacker, M.; Neumeier, M.; Zhang, X.; Papadakis, C. M.; Rieger, B. Sustainable Chiral Polyamides with High Melting Temperature via Enhanced Anionic Polymerization of a Menthone-Derived Lactam. Macromol. Rapid Commun. 2016, 37, 851–857. DOI: 10.1002/marc.201600056.
  • Winnacker, M.; Sag, J. Sustainable Terpene-Based Polyamides via Anionic Polymerization of a Pinene-Derived Lactam. Chem. Commun. (Camb). 2018, 54, 841–844. DOI: 10.1039/C7CC08266E.
  • Winnacker, M.; Sag, J.; Tischner, A.; Rieger, B. Sustainable, Stereoregular, and Optically Active Polyamides via Cationic Polymerization of ε-Lactams Derived from the Terpene β-Pinene. Macromol. Rapid Commun. 2017, 38, 1600787. DOI: 10.1002/marc.201600787.
  • Kleybolte, M. M.; Zainer, L.; Liu, J. Y.; Stockmann, P. N.; Winnacker, M. (+)-Limonene-Lactam: Synthesis of a Sustainable Monomer for Ring-Opening Polymerization to Novel, Biobased Polyamides. Macromol. Rapid Commun. 2022, 43, 2200185. DOI: 10.1002/marc.202200185.
  • Zhang, L.; Jiang, Y.; Xiong, Z.; Liu, X.; Na, H.; Zhang, R.; Zhu, J. Highly Recoverable Rosin-Based Shape Memory Polyurethanes. J. Mater. Chem. A. 2013, 1, 3263–3267. DOI: 10.1039/c3ta01655b.
  • Zhang, L.; Shams, S. S.; Wei, Y.; Liu, X.; Ma, S.; Zhang, R.; Zhu, J. Origin of Highly Recoverable Shape Memory Polyurethanes (Smpus) with Non-Planar Ring Structures: A Single Molecule Force Spectroscopy Investigation. J. Mater. Chem. A. 2014, 2, 20010–20016. DOI: 10.1039/C4TA05126B.
  • Firdaus, M.; Meier, M. A. R. Renewable Polyamides and Polyurethanes Derived from Limonene. Green Chem. 2013, 15, 370–380. DOI: 10.1039/C2GC36557J.
  • Byrne, C. M.; Allen, S. D.; Lobkovsky, E. B.; Coates, G. W. Alternating Copolymerization of Limonene Oxide and Carbon Dioxide. J. Am. Chem. Soc. 2004, 126, 11404–11405. DOI: 10.1021/ja0472580.
  • Auriemma, F.; De Rosa, C.; Di Caprio, M. R.; Di Girolamo, R.; Ellis, W. C.; Coates, G. W. Stereocomplexed Poly(Limonene Carbonate): a Unique Example of the Cocrystallization of Amorphous Enantiomeric Polymers. Angew. Chem. Int. Ed. Engl. 2015, 54, 1215–1218. DOI: 10.1002/anie.201410211.
  • Li, C.; Sablong, R. J.; Koning, C. E. Chemoselective Alternating Copolymerization of Limonene Dioxide and Carbon Dioxide: A New Highly Functional Aliphatic Epoxy Polycarbonate. Angew. Chem. Int. Ed. Engl. 2016, 55, 11572–11576. DOI: 10.1002/anie.201604674.
  • Li, C.; Sablong, R. J.; van Benthem, R. A. T. M.; Koning, C. E. Unique Base-Initiated Depolymerization of Limonene-Derived Polycarbonates. ACS Macro Lett. 2017, 6, 684–688. DOI: 10.1021/acsmacrolett.7b00310.
  • Hauenstein, O.; Agarwal, S.; Greiner, A. Bio-Based Polycarbonate as Synthetic Toolbox. Nat Commun. 2016, 7, 11862. DOI: 10.1038/ncomms11862.
  • Hauenstein, O.; Reiter, M.; Agarwal, S.; Rieger, B.; Greiner, A. Bio-Based Polycarbonate from Limonene Oxide and Co2 with High Molecular Weight, Excellent Thermal Resistance, Hardness and Transparency. Green Chem. 2016, 18, 760–770. DOI: 10.1039/C5GC01694K.
  • Stößer, T.; Li, C.; Unruangsri, J.; Saini, P. K.; Sablong, R. J.; Meier, M. A. R.; Williams, C. K.; Koning, C. Bio-Derived Polymers for Coating Applications: Comparing Poly(Limonene Carbonate) and Poly(Cyclohexadiene Carbonate). Polym. Chem. 2017, 8, 6099–6105. DOI: 10.1039/C7PY01223C.
  • Neumann, S.; Leitner, L.-C.; Schmalz, H.; Agarwal, S.; Greiner, A. Unlocking the Processability and Recyclability of Biobased Poly(Limonene Carbonate). ACS Sustain. Chem. Eng. 2020, 8, 6442–6448. DOI: 10.1021/acssuschemeng.0c00895.
  • Wang, H.; Liu, B.; Liu, X.; Zhang, J.; Xian, M. Synthesis of Biobased Epoxy and Curing Agents Using Rosin and the Study of Cure Reactions. Green Chem. 2008, 10, 1190–1196. DOI: 10.1039/b803295e.
  • Huang, K.; Zhang, J.; Li, M.; Xia, J.; Zhou, Y. Exploration of the Complementary Properties of Biobased Epoxies Derived from Rosin Diacid and Dimer Fatty Acid for Balanced Performance. Ind. Crop. Prod. 2013, 49, 497–506. DOI: 10.1016/j.indcrop.2013.05.024.
  • Mantzaridis, C.; Brocas, A.-L.; Llevot, A.; Cendejas, G.; Auvergne, R.; Caillol, S.; Carlotti, S.; Cramail, H. Rosin Acid Oligomers as Precursors of Dgeba-Free Epoxy Resins. Green Chem. 2013, 15, 3091–3098. DOI: 10.1039/c3gc41004h.
  • El-Ghazawy, R. A.; El-Saeed, A. M.; Al-Shafey, H. I.; Abdul-Raheim, A.-R. M.; El-Sockary, M. A. Rosin Based Epoxy Coating: Synthesis, Identification and Characterization. Eur. Polym. J. 2015, 69, 403–415. DOI: 10.1016/j.eurpolymj.2015.06.025.
  • Liu, X.; Xin, W.; Zhang, J. Rosin-Based Acid Anhydrides as Alternatives to Petrochemical Curing Agents. Green Chem. 2009, 11, 1018–1025. DOI: 10.1039/b903955d.
  • Li, R.; Zhang, P.; Liu, T.; Muhunthan, B.; Xin, J.; Zhang, J. Use of Hempseed-Oil-Derived Polyacid and Rosin-Derived Anhydride Acid as Cocuring Agents for Epoxy Materials. ACS Sustain. Chem. Eng. 2018, 6, 4016–4025. DOI: 10.1021/acssuschemeng.7b04399.
  • Chen, Y.; Xi, Z.; Zhao, L. New Bio-Based Polymeric Thermosets Synthesized by Ring-Opening Polymerization of Epoxidized Soybean Oil with a Green Curing Agent. Eur. Polym. J. 2016, 84, 435–447. DOI: 10.1016/j.eurpolymj.2016.08.038.
  • Wang, G.; Zhao, M.; Ma, J.; Li, G.; Chen, Y.; Jiang, X.; Xiao, M. Radiation-Pressure-Driven Mechanical Oscillations in Silica Microdisk Resonators on Chip. Sci. China Phys. Mech. Astron. 2015, 58, 1–4. DOI: 10.1007/s11433-015-5649-8.
  • Liu, X.; Xin, W.; Zhang, J. Rosin-Derived Imide-Diacids as Epoxy Curing Agents for Enhanced Performance. Bioresour Technol. 2010, 101, 2520–2524. DOI: 10.1016/j.biortech.2009.11.028.
  • Huang, X.; Yang, X.; Liu, H.; Shang, S.; Cai, Z.; Wu, K. Bio-Based Thermosetting Epoxy Foams from Epoxidized Soybean Oil and Rosin with Enhanced Properties. Ind. Crop. Prod. 2019, 139, 111540. DOI: 10.1016/j.indcrop.2019.111540.
  • Wang, H.; Liu, X.; Liu, B.; Zhang, J.; Xian, M. Synthesis of Rosin-Based Flexible Anhydride-Type Curing Agents and Properties of the Cured Epoxy. Polym. Int. 2009, 58, 1435–1441. DOI: 10.1002/pi.2680.
  • Xu, K.; Chen, M.; Zhang, K.; Hu, J. Synthesis and Characterization of Novel Epoxy Resin Bearing Naphthyl and Limonene Moieties, and Its Cured Polymer. Polymer. 2004, 45, 1133–1140. DOI: 10.1016/j.polymer.2003.12.035.
  • Yang, X.; Wang, C.; Li, S.; Huang, K.; Li, M.; Mao, W.; Cao, S.; Xia, J. Study on the Synthesis of Bio-Based Epoxy Curing Agent Derived from Myrcene and Castor Oil and the Properties of the Cured Products. RSC Adv. 2017, 7, 238–247. DOI: 10.1039/C6RA24818G.
  • Zhang, X.; Wu, Y.; Wei, J.; Tong, J.; Yi, X. Curing Kinetics and Mechanical Properties of Bio-Based Composite Using Rosin-Sourced Anhydrides as Curing Agent for Hot-Melt Prepreg. Sci. China Technol. Sci. 2017, 60, 1318–1331. DOI: 10.1007/s11431-016-9029-y.
  • Tserpes, K.; Tzatzadakis, V.; Katsiropoulos, C. Effect of Hygrothermal Ageing on the Interlaminar Shear Strength of Carbon Fiber-Reinforced Rosin-Based Epoxy Bio-Composites. Compos. Struct. 2019, 226, 111211. DOI: 10.1016/j.compstruct.2019.111211.
  • Mathers, R. T.; Damodaran, K.; Rendos, M. G.; Lavrich, M. S. Functional Hyperbranched Polymers Using Ring-Opening Metathesis Polymerization of Dicyclopentadiene with Monoterpenes. Macromolecules. 2009, 42, 1512–1518. DOI: 10.1021/ma802441t.
  • Ma, Q.; Liu, X.; Zhang, R.; Zhu, J.; Jiang, Y. Synthesis and Properties of Full Bio-Based Thermosetting Resins from Rosin Acid and Soybean Oil: The Role of Rosin Acid Derivatives. Green Chem. 2013, 15, 1300–1310. DOI: 10.1039/c3gc00095h.
  • Mandal, M.; Borgohain, P.; Begum, P.; Deka, R. C.; Maji, T. K. Property Enhancement and Dft Study of Wood Polymer Composites Using Rosin Derivatives as Co-Monomers. New J. Chem. 2018, 42, 2260–2269. DOI: 10.1039/C7NJ03825A.
  • Fu, F.; Wang, D.; Shen, M.; Shang, S.; Song, Z.; Song, J. Biorenewable Rosin Derived Benzocyclobutene Resin: A Thermosetting Material with Good Hydrophobicity and Low Dielectric Constant. RSC Adv. 2019, 9, 29788–29795. DOI: 10.1039/C9RA04828F.
  • Morinaga, H.; Sakamoto, M. Synthesis of Multi-Functional Epoxides Derived from Limonene Oxide and Its Application to the Network Polymers. Tetrahedron Lett. 2017, 58, 2438–2440. DOI: 10.1016/j.tetlet.2017.05.021.
  • Sainz, M. F.; Souto, J. A.; Regentova, D.; Johansson, M. K. G.; Timhagen, S. T.; Irvine, D. J.; Buijsen, P.; Koning, C. E.; Stockman, R. A.; Howdle, S. M. A Facile and Green Route to Terpene Derived Acrylate and Methacrylate Monomers and Simple Free Radical Polymerisation to Yield New Renewable Polymers and Coatings. Polym. Chem. 2016, 7, 2882–2887. DOI: 10.1039/C6PY00357E.
  • Mangeon, C.; Thevenieau, F.; Renard, E.; Langlois, V. Straightforward Route to Design Biorenewable Networks Based on Terpenes and Sunflower Oil. ACS Sustainable Chem. Eng. 2017, 5, 6707–6715. DOI: 10.1021/acssuschemeng.7b00959.
  • Weems, A. C.; Delle Chiaie, K. R.; Worch, J. C.; Stubbs, C. J.; Dove, A. P. Terpene- and Terpenoid-Based Polymeric Resins for Stereolithography 3D Printing. Polym. Chem. 2019, 10, 5959–5966. DOI: 10.1039/C9PY00950G.
  • Noppalit, S.; Simula, A.; Ballard, N.; Callies, X.; Asua, J. M.; Billon, L. Renewable Terpene Derivative as a Biosourced Elastomeric Building Block in the Design of Functional Acrylic Copolymers. Biomacromolecules. 2019, 20, 2241–2251. DOI: 10.1021/acs.biomac.9b00185.
  • Noppalit, S.; Simula, A.; Billon, L.; Asua, J. M. Paving the Way to Sustainable Waterborne Pressure-Sensitive Adhesives Using Terpene-Based Triblock Copolymers. ACS Sustain. Chem. Eng. 2019, 7, 17990–17998. DOI: 10.1021/acssuschemeng.9b04820.
  • Pickett, J. A.; Griffiths, D. C. Composition of Aphid Alarm Pheromones. J. Chem. Ecol. 1980, 6, 349–360. DOI: 10.1007/BF01402913.
  • McPhee, D. The Development of Catalytic Processes from Terpenes to Chemicals. In Catalytic Process Development for Renewable Materials; Imhof, P., van der Waal, J. C., Eds.; Wiley−VCH: Weinheim, Germany, 2013; pp 51–79. DOI: 10.1002/9783527656639.ch3.
  • Huelin, F. E.; Murray, K. E. α-Farnesene in the Natural Coating of Apples. Nature. 1966, 210, 1260–1261. DOI: 10.1038/2101260a0.
  • Claudino, M.; Mathevet, J.-M.; Jonsson, M.; Johansson, M. Bringing D-Limonene to the Scene of Bio-Based Thermoset Coatings via Free-Radical Thiol–Ene Chemistry: Macromonomer Synthesis, UV-Curing and Thermo-Mechanical Characterization. Polym. Chem. 2014, 5, 3245–3260. DOI: 10.1039/C3PY01302B.
  • Modjinou, T.; Versace, D.-L.; Abbad-Andallousi, S.; Bousserrhine, N.; Babinot, J.; Langlois, V.; Renard, E. Antibacterial Networks Based on Isosorbide and Linalool by Photoinitiated Process. ACS Sustain. Chem. Eng. 2015, 3, 1094–1100. DOI: 10.1021/acssuschemeng.5b00018.
  • Lu, C.; Wang, C.; Yu, J.; Wang, J.; Chu, F. Two-Step 3D-Printing Approach toward Sustainable, Repairable, Fluorescent Shape-Memory Thermosets Derived from Cellulose and Rosin. ChemSusChem. 2020, 13, 893–902. DOI: 10.1002/cssc.201902191.
  • Jeromenok, J.; Böhlmann, W.; Jäger, C.; Weber, J. Carbon Dioxide Adsorption in Betulin-Based Micro- and Macroporous Polyurethanes. ChemistryOpen. 2013, 2, 17–20. DOI: 10.1002/open.201200045.
  • Schimpf, V.; Ritter, B. S.; Weis, P.; Parison, K.; Mülhaupt, R. High Purity Limonene Dicarbonate as Versatile Building Block for Sustainable Non-Isocyanate Polyhydroxyurethane Thermosets and Thermoplastics. Macromolecules. 2017, 50, 944–955. DOI: 10.1021/acs.macromol.6b02460.
  • Harvey, B. G.; Guenthner, A. J.; Koontz, T. A.; Storch, P. J.; Reams, J. T.; Groshens, T. J. Sustainable Hydrophobic Thermosetting Resins and Polycarbonates from Turpentine. Green Chem. 2016, 18, 2416–2423. DOI: 10.1039/C5GC02893K.
  • Lowe, J. R.; Tolman, W. B.; Hillmyer, M. A. Oxidized Dihydrocarvone as a Renewable Multifunctional Monomer for the Synthesis of Shape Memory Polyesters. Biomacromolecules. 2009, 10, 2003–2008. DOI: 10.1021/bm900471a.
  • Curia, S.; Dautle, S.; Satterfield, B.; Yorke, K.; Cranley, C. E.; Dobson, B. E.; La Scala, J. J.; Soh, L.; Gordon, M. B.; Stanzione, J. F. Betulin-Based Thermoplastics and Thermosets through Sustainable and Industrially Viable Approaches: New Insights for the Valorization of an Underutilized Resource. ACS Sustain. Chem. Eng. 2019, 7, 16371–16381. DOI: 10.1021/acssuschemeng.9b03471.
  • Li, C.; Liu, J.; Chen, Y.; Li, T.; Cai, X.; Sung, J.; Sun, X. S. Hybrid Network via Instantaneous Photoradiation: High Efficient Design of 100% Bio-Based Thermosets with Remoldable and Recyclable Capabilities after UV Curing. Chem. Eng. J. 2018, 336, 54–63. DOI: 10.1016/j.cej.2017.11.055.
  • Scott, T. F.; Schneider, A. D.; Cook, W. D.; Bowman, C. N. Photoinduced Plasticity in Cross-Linked Polymers. Science. 2005, 308, 1615–1617. DOI: 10.1126/science.1110505.
  • Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N. Covalent Adaptable Networks (Cans): A Unique Paradigm in Cross-Linked Polymers. Macromolecules. 2010, 43, 2643–2653. DOI: 10.1021/ma902596s.
  • Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science. 2011, 334, 965–968. DOI: 10.1126/science.1212648.
  • Capelot, M.; Unterlass, M. M.; Tournilhac, F.; Leibler, L. Catalytic Control of the Vitrimer Glass Transition. ACS Macro Lett. 2012, 1, 789–792. DOI: 10.1021/mz300239f.
  • Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: Permanent Organic Networks with Glass-Like Fluidity. Chem Sci. 2016, 7, 30–38. DOI: 10.1039/C5SC02223A.
  • Lehn, J.-M. Dynamers: Dynamic Molecular and Supramolecular Polymers. Prog. Polym. Sci. 2005, 30, 814–831. DOI: 10.1016/j.progpolymsci.2005.06.002.
  • Giuseppone, N.; Fuks, G.; Lehn, J.-M. Tunable Fluorene-Based Dynamers through Constitutional Dynamic Chemistry. Chemistry. 2006, 12, 1723–1735. DOI: 10.1002/chem.200501037.
  • Ono, T.; Fujii, S.; Nobori, T.; Lehn, J.-M. Optodynamers: Expression of Color and Fluorescence at the Interface between Two Films of Different Dynamic Polymers. Chem. Commun. 2007, 4360–4362. DOI: 10.1039/b712454f.
  • Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. Mouldable Liquid-Crystalline Elastomer Actuators with Exchangeable Covalent Bonds. Nat Mater. 2014, 13, 36–41. DOI: 10.1038/nmat3812.
  • Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset Shape-Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation. Angew. Chem. Int. Ed. Engl. 2016, 55, 11421–11425. DOI: 10.1002/anie.201602847.
  • Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C. K.; Dunn, M. L.; Wang, T.; Jerry Qi, H. Recyclable 3D Printing of Vitrimer Epoxy. Mater. Horiz. 2017, 4, 598–607. DOI: 10.1039/C7MH00043J.
  • Liu, T.; Hao, C.; Wang, L.; Li, Y.; Liu, W.; Xin, J.; Zhang, J. Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability. Macromolecules. 2017, 50, 8588–8597. DOI: 10.1021/acs.macromol.7b01889.
  • Wang, S.; Ma, S.; Li, Q.; Yuan, W.; Wang, B.; Zhu, J. Robust, Fire-Safe, Monomer-Recovery, Highly Malleable Thermosets from Renewable Bioresources. Macromolecules. 2018, 51, 8001–8012. DOI: 10.1021/acs.macromol.8b01601.
  • Zhang, S.; Liu, T.; Hao, C.; Wang, L.; Han, J.; Liu, H.; Zhang, J. Preparation of a Lignin-Based Vitrimer Material and Its Potential Use for Recoverable Adhesives. Green Chem. 2018, 20, 2995–3000. DOI: 10.1039/C8GC01299G.
  • Wang, S.; Ma, S.; Li, Q.; Xu, X.; Wang, B.; Yuan, W.; Zhou, S.; You, S.; Zhu, J. Facile in Situ Preparation of High-Performance Epoxy Vitrimer from Renewable Resources and Its Application in Nondestructive Recyclable Carbon Fiber Composite. Green Chem. 2019, 21, 1484–1497. DOI: 10.1039/C8GC03477J.
  • Wu, J.; Yu, X.; Zhang, H.; Guo, J.; Hu, J.; Li, M.-H. Fully Biobased Vitrimers from Glycyrrhizic Acid and Soybean Oil for Self-Healing, Shape Memory, Weldable, and Recyclable Materials. ACS Sustain. Chem. Eng. 2020, 8, 6479–6487. DOI: 10.1021/acssuschemeng.0c01047.
  • Wu, J.; Gao, L.; Guo, Z.; Zhang, H.; Zhang, B.; Hu, J.; Li, M.-H. Natural Glycyrrhizic Acid: Improving Stress Relaxation Rate and Glass Transition Temperature Simultaneously in Epoxy Vitrimers. Green Chem. 2021, 23, 5647–5655. DOI: 10.1039/D1GC01274F.
  • Zhang, W.; Wu, J.; Gao, L.; Zhang, B.; Jiang, J.; Hu, J. Recyclable, Reprocessable, Self-Adhered and Repairable Carbon Fiber Reinforced Polymers Using Full Biobased Matrices from Camphoric Acid and Epoxidized Soybean Oil. Green Chem. 2021, 23, 2763–2772. DOI: 10.1039/D1GC00648G.
  • Yang, X.; Guo, L.; Xu, X.; Shang, S.; Liu, H. A Fully Bio-Based Epoxy Vitrimer: Self-Healing, Triple-Shape Memory and Reprocessing Triggered by Dynamic Covalent Bond Exchange. Mater. Design. 2020, 186, 108248. DOI: 10.1016/j.matdes.2019.108248.
  • Denissen, W.; Droesbeke, M.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Chemical Control of the Viscoelastic Properties of Vinylogous Urethane Vitrimers. Nat Commun. 2017, 8, 14857. DOI: 10.1038/ncomms14857.
  • Zhu, Y.; Gao, F.; Zhong, J.; Shen, L.; Lin, Y. Renewable Castor Oil and DL-Limonene Derived Fully Bio-Based Vinylogous Urethane Vitrimers. Eur. Polym. J. 2020, 135, 109865. DOI: 10.1016/j.eurpolymj.2020.109865.
  • Gao, S.; Cheng, Z.; Zhou, X.; Liu, Y.; Wang, J.; Wang, C.; Chu, F.; Xu, F.; Zhang, D. Fabrication of Lignin Based Renewable Dynamic Networks and Its Applications as Self-Healing, Antifungal and Conductive Adhesives. Chem. Eng. J. 2020, 394, 124896. DOI: 10.1016/j.cej.2020.124896.
  • Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; et al. The Use of Elemental Sulfur as an Alternative Feedstock for Polymeric Materials. Nat. Chem. 2013, 5, 518–524. DOI: 10.1038/nchem.1624.
  • Zhang, Y.; Glass, R. S.; Char, K.; Pyun, J. Recent Advances in the Polymerization of Elemental Sulphur, Inverse Vulcanization and Methods to Obtain Functional Chalcogenide Hybrid Onorganic/Organic Polymers (Chips). Polym. Chem. 2019, 10, 4078–4105. DOI: 10.1039/C9PY00636B.
  • Crockett, M. P.; Evans, A. M.; Worthington, M. J. H.; Albuquerque, I. S.; Slattery, A. D.; Gibson, C. T.; Campbell, J. A.; Lewis, D. A.; Bernardes, G. J. L.; Chalker, J. M. Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial by-Products and Its Use in Removing Toxic Metals from Water and Soil. Angew. Chem. Int. Ed. Engl. 2016, 55, 1714–1718. DOI: 10.1002/anie.201508708.
  • Parker, D. J.; Jones, H. A.; Petcher, S.; Cervini, L.; Griffin, J. M.; Akhtar, R.; Hasell, T. Low Cost and Renewable Sulfur-Polymers by Inverse Vulcanisation, and Their Potential for Mercury Capture. J. Mater. Chem. A. 2017, 5, 11682–11692. DOI: 10.1039/C6TA09862B.
  • Sahu, T. S.; Choi, S.; Jaumaux, P.; Zhang, J.; Wang, C.; Zhou, D.; Wang, G. Squalene-Derived Sulfur-Rich Copolymer@ 3D Graphene-Carbon Nanotube Network Cathode for High-Performance Lithium-Sulfur Batteries. Polyhedron. 2019, 162, 147–154. DOI: 10.1016/j.poly.2019.01.068.
  • Parker, D. J.; Chong, S. T.; Hasell, T. Sustainable Inverse-Vulcanised Sulfur Polymers. RSC Adv. 2018, 8, 27892–27899. DOI: 10.1039/C8RA04446E.
  • Lehn, J.-M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 1988, 27, 89–112. DOI: 10.1002/anie.198800891.
  • Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science. 2002, 295, 2418–2421. DOI: 10.1126/science.1070821.
  • Rybtchinski, B. Adaptive Supramolecular Nanomaterials Based on Strong Noncovalent Interactions. ACS Nano. 2011, 5, 6791–6818. DOI: 10.1021/nn2025397.
  • Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Noncovalent Synthesis Using Hydrogen Bonding. Angew. Chem. Int. Ed. 2001, 40, 2382–2426. DOI: 10.1002/1521-3773(20010702)40:13 < 2382::Aid-Anie2382 > 3.0.Co;2-G.
  • Zhang, L.; Wang, X. F.; Wang, T. Y.; Liu, M. H. Tuning Soft Nanostructures in Self-Assembled Supramolecular Gels: From Morphology Control to Morphology-Dependent Functions. Small. 2015, 11, 1025–1038. DOI: 10.1002/smll.201402075.
  • Burdick, J. A.; Murphy, W. L. Moving from Static to Dynamic Complexity in Hydrogel Design. Nat Commun. 2012, 3, 1269. DOI: 10.1038/ncomms2271.
  • Zhang Yu, S.; Khademhosseini, A. Advances in Engineering Hydrogels. Science. 2017, 356, eaaf3627. DOI: 10.1126/science.aaf3627.
  • He, X. L.; Yu, S.; Dong, Y. Y.; Yan, F. Y.; Chen, L. Preparation and Properties of a Novel Thermo-Responsive Poly(N-Isopropylacrylamide) Hydrogel Containing Glycyrrhetinic Acid. J. Mater. Sci. 2009, 44, 4078–4086. DOI: 10.1007/s10853-009-3588-3.
  • Wei, Z.; Yang, J. H.; Zhou, J.; Xu, F.; Zrínyi, M.; Dussault, P. H.; Osada, Y.; Chen, Y. M. Self-Healing Gels Based on Constitutional Dynamic Chemistry and Their Potential Applications. Chem. Soc. Rev. 2014, 43, 8114–8131. DOI: 10.1039/C4CS00219A.
  • Li, Y.; Li, J. Z.; Zhao, X.; Yan, Q.; Gao, Y. X.; Hao, J.; Hu, J.; Ju, Y. Triterpenoid-Based Self-Healing Supramolecular Polymer Hydrogels Formed by Host-Guest Interactions. Chemistry. 2016, 22, 18435–18441. DOI: 10.1002/chem.201603753.
  • Xu, G.; Li, J.; Wu, J.; Zhang, H.; Hu, J.; Li, M.-H. Tough Polymeric Hydrogels Formed by Natural Glycyrrhetinic Acid-Tailored Host–Guest Macro-Cross-Linking Toward Biocompatible Materials. ACS Appl. Polym. Mater. 2019, 1, 2577–2581. DOI: 10.1021/acsapm.9b00723.
  • Hao, J.; Gao, Y. X.; Liu, J. G.; Hu, J.; Ju, Y. Tough, Stretchable, Compressive Double Network Hydrogel Using Natural Glycyrrhizic Acid Tailored Low-Molecular-Weight Gelator Strategy: In Situ Spontaneous Formation of Au Nanoparticles to Generate a Continuous Flow Reactor. ACS Appl Mater Interfaces. 2020, 12, 4927–4933. DOI: 10.1021/acsami.9b20425.
  • Zhang, H.; Tang, N.; Yu, X.; Guo, Z.; Liu, Z.; Sun, X.; Li, M.-H.; Hu, J. Natural Glycyrrhizic Acid-Tailored Hydrogel with in-Situ Gradient Reduction of Agnps Layer as High-Performance, Multi-Functional, Sustainable Flexible Sensors. Chem. Eng. J. 2022, 430, 132779. DOI: 10.1016/j.cej.2021.132779.
  • Yao, F.; Zhang, D. Y.; Zhang, C. H.; Yang, W. T.; Deng, J. P. Preparation and Application of Abietic Acid-Derived Optically Active Helical Polymers and Their Chiral Hydrogels. Bioresour Technol. 2013, 129, 58–64. DOI: 10.1016/j.biortech.2012.10.157.
  • Abeer, M. M.; Amin, M. C. I. M.; Lazim, A. M.; Pandey, M.; Martin, C. Synthesis of a Novel Acrylated Abietic Acid-G-Bacterial Cellulose Hydrogel by Gamma Irradiation. Carbohydr Polym. 2014, 110, 505–512. DOI: 10.1016/j.carbpol.2014.04.052.
  • Tong, X. F.; Zhao, F. Q.; Ren, Y. Z.; Zhang, Y.; Cui, Y. L.; Wang, Q. S. Injectable Hydrogels Based on Glycyrrhizin, Alginate, and Calcium for Three-Dimensional Cell Culture in Liver Tissue Engineering. J. Biomed. Mater. Res. A. 2018, 106, 3292–3302. DOI: 10.1002/jbm.a.36528.
  • Zhao, L.; Zhang, H.; Guo, Z.; Yu, X.; Jiao, X.; Li, M.-H.; Hu, J. Natural Glycyrrhizic Acid-Tailored Homogeneous Conductive Polyaniline Hydrogel as a Flexible Strain Sensor. ACS Appl Mater Interfaces. 2022, 14, 51394–51403. DOI: 10.1021/acsami.2c16129.
  • Anjum, S.; Anjum, I.; Hano, C.; Kousar, S. Advances in Nanomaterials as Novel Elicitors of Pharmacologically Active Plant Specialized Metabolites: Current Status and Future Outlooks. RSC Adv. 2019, 9, 40404–40423. DOI: 10.1039/c9ra08457f.
  • Lim, E. K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y. M.; Lee, K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem. Rev. 2015, 115, 327–394. DOI: 10.1021/cr300213b.
  • Patel, K. D.; Singh, R. K.; Kim, H. W. Carbon-Based Nanomaterials as an Emerging Platform for Theranostics. Mater. Horiz. 2019, 6, 434–469. DOI: 10.1039/C8MH00966J.
  • Thakor, A. S.; Gambhir, S. S. Nanooncology: The Future of Cancer Diagnosis and Therapy. CA Cancer J. Clin. 2013, 63, 395–418. DOI: 10.3322/caac.21199.
  • Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A. Albumin-Based Nanoparticles as Potential Controlled Release Drug Delivery Systems. J Control Release. 2012, 157, 168–182. DOI: 10.1016/j.jconrel.2011.07.031.
  • Ravar, F.; Saadat, E.; Gholami, M.; Dehghankelishadi, P.; Mahdavi, M.; Azami, S.; Dorkoosh, F. A. Hyaluronic Acid-Coated Liposomes for Targeted Delivery of Paclitaxel, in-Vitro Characterization and in-Vivo Evaluation. J Control Release. 2016, 229, 10–22. DOI: 10.1016/j.jconrel.2016.03.012.
  • Xu, X.; Wang, J.; Wang, Y. F.; Zhao, L. M.; Li, Y. L.; Liu, C. S. Formation of Graphene Oxide-Hybridized Nanogels for Combinative Anticancer Therapy. Nanomedicine. 2018, 14, 2387–2395. DOI: 10.1016/j.nano.2017.05.007.
  • Wang, G. Y.; Chen, Y. Y.; Wang, P.; Wang, Y. F.; Hong, H.; Li, Y. L.; Qian, J. C.; Yuan, Y.; Yu, B.; Liu, C. S. Preferential Tumor Accumulation and Desirable Interstitial Penetration of Poly(Lactic-Co-Glycolic Acid) Nanoparticles with Dual Coating of Chitosan Oligosaccharide and Polyethylene Glycol-Poly(D,L-Lactic Acid). Acta Biomater. 2016, 29, 248–260. DOI: 10.1016/j.actbio.2015.10.017.
  • Kim, H.; Kwak, G.; Kim, K.; Yoon, H. Y.; Kwon, I. C. Theranostic Designs of Biomaterials for Precision Medicine in Cancer Therapy. Biomaterials. 2019, 213, 119207. DOI: 10.1016/j.biomaterials.2019.05.018.
  • Landesman-Milo, D.; Peer, D. Transforming Nanomedicines from Lab Scale Production to Novel Clinical Modality. Bioconjug Chem. 2016, 27, 855–862. DOI: 10.1021/acs.bioconjchem.5b00607.
  • Li, W. J.; Zhan, P.; De Clercq, E.; Lou, H. X.; Liu, X. Y. Current Drug Research on Pegylation with Small Molecular Agents. Prog. Polym. Sci. 2013, 38, 421–444. DOI: 10.1016/j.progpolymsci.2012.07.006.
  • Dai, L.; Li, D.; Cheng, J.; Liu, J.; Deng, L. H.; Wang, L. Y.; Lei, J. D.; He, J. Water Soluble Multiarm-Polyethylene Glycol-Betulinic Acid Prodrugs: Design, Synthesis, and in Vivo Effectiveness. Polym. Chem. 2014, 5, 5775–5783. DOI: 10.1039/C4PY00648H.
  • Dai, L.; Cao, X.; Liu, K. F.; Li, C. X.; Zhang, G. F.; Deng, L. H.; Si, C. L.; He, J.; Lei, J. D. Self-Assembled Targeted Folate-Conjugated Eight-Arm-Polyethylene Glycol-Betulinic Acid Nanoparticles for Co-Delivery of Anticancer Drugs. J Mater Chem B. 2015, 3, 3754–3766. DOI: 10.1039/c5tb00042d.
  • Dai, L.; Liu, K. F.; Si, C. L.; He, J.; Lei, J. D.; Guo, L. Q. A Novel Self-Assembled Targeted Nanoparticle Platform Based on Carboxymethylcellulose Co-Delivery of Anticancer Drugs. J Mater Chem B. 2015, 3, 6605–6617. DOI: 10.1039/c5tb00900f.
  • Dash, S. K.; Dash, S. S.; Chattopadhyay, S.; Ghosh, T.; Tripathy, S.; Mahapatra, S. K.; Bag, B. G.; Das, D.; Roy, S. Folate Decorated Delivery of Self Assembled Betulinic Acid Nano Fibers: A Biocompatible Anti-Leukemic Therapy. RSC Adv. 2015, 5, 24144–24157. DOI: 10.1039/C5RA01076D.
  • Tian, Z.; Yang, C.; Wang, W.; Yuan, Z. Shieldable Tumor Targeting Based on pH Responsive Self-Assembly/Disassembly of Gold Nanoparticles. ACS Appl Mater Interfaces. 2014, 6, 17865–17876. DOI: 10.1021/am5045339.
  • Zhao, T.; Liu, Y.; Gao, Z.; Gao, D.; Li, N.; Bian, Y.; Dai, K.; Liu, Z. Self-Assembly and Cytotoxicity Study of Peg-Modified Ursolic Acid Liposomes. Mater Sci Eng C Mater Biol Appl. 2015, 53, 196–203. DOI: 10.1016/j.msec.2015.04.022.
  • Tao, R.; Gao, M.; Liu, F.; Guo, X.; Fan, A.; Ding, D.; Kong, D.; Wang, Z.; Zhao, Y. Alleviating the Liver Toxicity of Chemotherapy via pH-Responsive Hepatoprotective Prodrug Micelles. ACS Appl Mater Interfaces. 2018, 10, 21836–21846. DOI: 10.1021/acsami.8b04192.
  • Mathiyalagan, R.; Kim, Y. J.; Wang, C.; Jin, Y.; Subramaniyam, S.; Singh, P.; Wang, D.; Yang, D. C. Protopanaxadiol Aglycone Ginsenoside-Polyethylene Glycol Conjugates: Synthesis, Physicochemical Characterizations, and in Vitro Studies. Artif Cells Nanomed Biotechnol. 2016, 44, 1803–1809. DOI: 10.3109/21691401.2015.1105236.
  • Ma, Z. Y.; Jia, Y. G.; Zhu, X. X. Glycopolymers Bearing Galactose and Betulin: Synthesis, Encapsulation, and Lectin Recognition. Biomacromolecules. 2017, 18, 3812–3818. DOI: 10.1021/acs.biomac.7b01106.
  • Li, Y.; Wu, Y.; Huang, L.; Miao, L.; Zhou, J.; Satterlee, A. B.; Yao, J. Sigma Receptor-Mediated Targeted Delivery of anti-Angiogenic Multifunctional Nanodrugs for Combination Tumor Therapy. J Control Release. 2016, 228, 107–119. DOI: 10.1016/j.jconrel.2016.02.044.
  • Li, Y.; Gao, Y.; Wang, B.; Hao, J.; Hu, J.; Ju, Y. Natural Triterpenoid- and Oligo(Ethylene Glycol)-Pendant-Containing Block and Random Copolymers: Aggregation and pH-Controlled Release. Chem. Asian J. 2018, 13, 2723–2729. DOI: 10.1002/asia.201800761.
  • Wang, Y.-S.; Li, G.-L.; Zhu, S.-B.; Jing, F.-C.; Liu, R.-D.; Li, S.-S.; He, J.; Lei, J.-D. A Self-Assembled Nanoparticle Platform Based on Amphiphilic Oleanolic Acid Polyprodrug for Cancer Therapy. Chin J Polym Sci. 2020, 38, 819–829. DOI: 10.1007/s10118-020-2401-2.
  • Guo, H.; Lai, Q.; Wang, W.; Wu, Y.; Zhang, C.; Liu, Y.; Yuan, Z. Functional Alginate Nanoparticles for Efficient Intracellular Release of Doxorubicin and Hepatoma Carcinoma Cell Targeting Therapy. Int J Pharm. 2013, 451, 1–11. DOI: 10.1016/j.ijpharm.2013.04.025.
  • Wang, X.; Gu, X.; Wang, H.; Sun, Y.; Wu, H.; Mao, S. Synthesis, Characterization and Liver Targeting Evaluation of Self-Assembled Hyaluronic Acid Nanoparticles Functionalized with Glycyrrhetinic Acid. Eur J Pharm Sci. 2017, 96, 255–262. DOI: 10.1016/j.ejps.2016.09.036.
  • Mathiyalagan, R.; Subramaniyam, S.; Kim, Y. J.; Kim, Y.-C.; Yang, D. C. Ginsenoside Compound K-Bearing Glycol Chitosan Conjugates: Synthesis, Physicochemical Characterization, and in Vitro Biological Studies. Carbohydr Polym. 2014, 112, 359–366. DOI: 10.1016/j.carbpol.2014.05.098.
  • Zhang, Y.; Li, J.; Wang, Z.; Xu, M.-Z.; Zeng, Z.; Huang, J.; P.; Guan, Y.-Q. Natural Plant-Derived Polygalacturonic Acid-Oleanolic Acid Assemblies as Oral-Delivered Nanomedicine for Insulin Resistance Treatment. Chem. Eng. J. 2020, 390, 124630. DOI: 10.1016/j.cej.2020.124630.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.