622
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Conductive Polymer/Nanocellulose Composites as a Functional Platform for Electronic Devices: A Mini-Review

, , , , , , , , , & show all
Pages 162-191 | Received 10 Jan 2023, Accepted 25 May 2023, Published online: 05 Jun 2023

References

  • Liu, H.; Du, H.; Zheng, T.; Liu, K.; Ji, X.; Xu, T.; Zhang, X.; Si, C. Cellulose Based Composite Foams and Aerogels for Advanced Energy Storage Devices. Chem. Eng. J. 2021, 426, 130817. DOI: 10.1016/j.cej.2021.130817.
  • Chen, W.; Yu, H.; Lee, S.-Y.; Wei, T.; Li, J.; Fan, Z. Nanocellulose: A Promising Nanomaterial for Advanced Electrochemical Energy Storage. Chem. Soc. Rev. 2018, 47, 2837–2872. DOI: 10.1039/C7CS00790F.
  • Liao, Z.; Zhou, X.; Wei, G.; Wang, S.; Gao, C.; Wang, L. Intrinsically Self-Healable and Wearable All-Organic Thermoelectric Composite with High Electrical Conductivity for Heat Harvesting. ACS Appl. Mater. Interfaces. 2022, 14, 43421–43430. DOI: 10.1021/acsami.2c13593.
  • Liang, Y.; Zhao, C.-Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J.-Q.; Yu, D.; Liu, Y.; Titirici, M.-M.; Chueh, Y.-L.; et al. A Review of Rechargeable Batteries for Portable Electronic Devices. InfoMat 2019, 1, 6–32. DOI: 10.1002/inf2.12000.
  • Zhu, S.; Tang, Y.; Lin, C.; Liu, X. Y.; Lin, Y. Recent Advances in Patterning Natural Polymers: From Nanofabrication Techniques to Applications. Small Methods 2021, 5, 2001060. DOI: 10.1002/smtd.202001060.
  • Gao, D.; Lv, J.; Lee, P. S. Natural Polymer in Soft Electronics: Opportunities, Challenges, and Future Prospects. Adv. Mater. 2022, 34, 2105020. DOI: 10.1002/adma.202105020.
  • Azizi Samir, M. A. S.; Alloin, F.; Dufresne, A. Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules 2005, 6, 612–626. DOI: 10.1021/bm0493685.
  • Shokri, J.; Adibkia, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In Cellulose-Medical, Pharmaceutical and Electronic Applications. Rijeka: IntechOpen; 2013.
  • Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. DOI: 10.1021/cr900339w.
  • Foster, E. J.; Moon, R. J.; Agarwal, U. P.; Bortner, M. J.; Bras, J.; Camarero-Espinosa, S.; Chan, K. J.; Clift, M. J. D.; Cranston, E. D.; Eichhorn, S. J.; et al. Current Characterization Methods for Cellulose Nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679. DOI: 10.1039/c6cs00895j.
  • Lin, N.; Dufresne, A. Nanocellulose in Biomedicine: Current Status and Future Prospect. Eur. Polym. J. 2014, 59, 302–325. DOI: 10.1016/j.eurpolymj.2014.07.025.
  • Zhang, Y.; Hao, N.; Lin, X.; Nie, S. Emerging Challenges in the Thermal Management of Cellulose Nanofibril-Based Supercapacitors, Lithium-Ion Batteries and Solar Cells: A Review. Carbohydr. Polym. 2020, 234, 115888. DOI: 10.1016/j.carbpol.2020.115888.
  • Vicente, A. T.; Araújo, A.; Mendes, M. J.; Nunes, D.; Oliveira, M. J.; Sanchez-Sobrado, O.; Ferreira, M. P.; Águas, H.; Fortunato, E.; Martins, R. Multifunctional Cellulose-Paper for Light Harvesting and Smart Sensing Applications. J. Mater. Chem. C 2018, 6, 3143–3181. DOI: 10.1039/C7TC05271E.
  • Horta-Velázquez, A.; Morales-Narváez, E. Nanocellulose in Wearable Sensors. Green Anal. Chem. 2022, 1, 100009. DOI: 10.1016/j.greeac.2022.100009.
  • Brooke, R.; Lay, M.; Jain, K.; Francon, H.; Say, M. G.; Belaineh, D.; Wang, X.; Håkansson, K. M. O.; Wågberg, L.; Engquist, I.; et al. Nanocellulose and PEDOT:PSS Composites and Their Applications. Polym. Rev. 2023, 63, 437–477. DOI: 10.1080/15583724.2022.2106491.
  • Dufresne, A. Cellulose Nanomaterial Reinforced Polymer Nanocomposites. Curr. Opin. Colloid Interface Sci. 2017, 29, 1–8. DOI: 10.1016/j.cocis.2017.01.004.
  • Zhang, Z.; Whitten, D. G.; Kell, A. Fluorescent Cellulose Wipe as a New and Sustainable Light-Activated Antibacterial and Antiviral Agent. ACS Mater. Lett. 2022, 4, 356–362. DOI: 10.1021/acsmaterialslett.1c00605.
  • Lokhande, P. E.; Singh, P. P.; Vo, D.-V. N.; Kumar, D.; Balasubramanian, K.; Mubayi, A.; Srivastava, A.; Sharma, A. Bacterial Nanocellulose: Green Polymer Materials for High Performance Energy Storage Applications. J. Environ. Chem. Eng. 2022, 10, 108176. DOI: 10.1016/j.jece.2022.108176.
  • Chen, C.; Hu, L. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. Acc. Chem. Res. 2018, 51, 3154–3165. DOI: 10.1021/acs.accounts.8b00391.
  • Yin, Z.; Zheng, Q. Controlled Synthesis and Energy Applications of One‐Dimensional Conducting Polymer Nanostructures: An Overview. Adv. Energy Mater. 2012, 2, 179–218. DOI: 10.1002/aenm.201100560.
  • Nezakati, T.; Seifalian, A.; Tan, A.; Seifalian, A. M. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem. Rev. 2018, 118, 6766–6843. DOI: 10.1021/acs.chemrev.6b00275.
  • Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured Conductive Polymers for Advanced Energy Storage. Chem. Soc. Rev. 2015, 44, 6684–6696. DOI: 10.1039/c5cs00362h.
  • Wang, Y.; Liu, A.; Han, Y.; Li, T. Sensors Based on Conductive Polymers and Their Composites: A Review. Polym. Int. 2020, 69, 7–17. DOI: 10.1002/pi.5907.
  • Abdelhamid, M. E.; O'Mullane, A. P.; Snook, G. A. Storing Energy in Plastics: A Review on Conducting Polymers & Their Role in Electrochemical Energy Storage. RSC Adv. 2015, 5, 11611–11626. DOI: 10.1039/C4RA15947K.
  • K, N.; Rout, C. S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659–5697. DOI: 10.1039/d0ra07800j.
  • Collier, J. H.; Camp, J. P.; Hudson, T. W.; Schmidt, C. E. Synthesis and Characterization of Polypyrrole–Hyaluronic Acid Composite Biomaterials for Tissue Engineering Applications. J. Biomed. Mater. Res. 2000, 50, 574–584. DOI: 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I.
  • Lay, M.; Méndez, J. A.; Delgado-Aguilar, M.; Bun, K. N.; Vilaseca, F. Strong and Electrically Conductive Nanopaper from Cellulose Nanofibers and Polypyrrole. Carbohydr. Polym. 2016, 152, 361–369. DOI: 10.1016/j.carbpol.2016.06.102.
  • Nystrom, G.; Mihranyan, A.; Razaq, A.; Lindstrom, T.; Nyholm, L.; Strømme, M. A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. J. Phys. Chem. B 2010, 114, 4178–4182. DOI: 10.1021/jp911272m.
  • Du, X.; Zhang, Z.; Liu, W.; Deng, Y. Nanocellulose-Based Conductive Materials and Their Emerging Applications in Energy devices - A Review. Nano Energy 2017, 35, 299–320. DOI: 10.1016/j.nanoen.2017.04.001.
  • Huang, B.; Kang, G.; Ni, Y. Preparation of Conductive Paper by in-Situ Polymerization of Pyrrole in a Pulp Fibre System. Go to reference in article 2007.
  • Gou, H.; He, J.; Mo, Z.; Zhao, Z. Ultrasonic Preparation of Cellulose/Ag/Polyaniline Conductive Composites and Its Electrical Properties. J. Mater. Sci: Mater. Electron. 2015, 26, 7295–7302. DOI: 10.1007/s10854-015-3357-9.
  • Zhu, L.; Wu, L.; Sun, Y.; Li, M.; Xu, J.; Bai, Z.; Liang, G.; Liu, L.; Fang, D.; Xu, W. Cotton Fabrics Coated with Lignosulfonate-Doped Polypyrrole for Flexible Supercapacitor Electrodes. RSC Adv. 2014, 4, 6261–6266. DOI: 10.1039/c3ra47224h.
  • Agarwal, M.; Xing, Q.; Shim, B. S.; Kotov, N.; Varahramyan, K.; Lvov, Y. Conductive Paper from Lignocellulose Wood Microfibers Coated with a Nanocomposite of Carbon Nanotubes and Conductive Polymers. Nanotechnology 2009, 20, 215602. DOI: 10.1088/0957-4484/20/21/215602.
  • Kumar, D.; Sharma, R. Advances in Conductive Polymers. Eur. Polym. J. 1998, 34, 1053–1060. DOI: 10.1016/S0014-3057(97)00204-8.
  • Hanif, Z.; Shin, D.; Choi, D.; Park, S. J. Development of a Vapor Phase Polymerization Method Using a Wet-on-Wet Process to Coat Polypyrrole on Never-Dried Nanocellulose Crystals for Fabrication of Compression Strain Sensor. Chem. Eng. J. 2020, 381, 122700. DOI: 10.1016/j.cej.2019.122700.
  • Zhang, D.; Qiu, S.; Huang, W.; Yang, D.; Wang, H.; Fang, Z. Mechanically Strong and Electrically Stable Polypyrrole Paper Using High Molecular Weight Sulfonated Alkaline Lignin as a Dispersant and Dopant. J. Colloid Interface Sci. 2019, 556, 47–53. DOI: 10.1016/j.jcis.2019.08.029.
  • van den Berg, O.; Schroeter, M.; Capadona, J. R.; Weder, C. Nanocomposites Based on Cellulose Whiskers and (Semi) Conducting Conjugated Polymers. J. Mater. Chem. 2007, 17, 2746–2753. DOI: 10.1039/b700878c.
  • Shi, Z.; Phillips, G. O.; Yang, G. Nanocellulose Electroconductive Composites. Nanoscale 2013, 5, 3194–3201. DOI: 10.1039/c3nr00408b.
  • Xu, X.; Liu, F.; Jiang, L.; Zhu, J. Y.; Haagenson, D.; Wiesenborn, D. P. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl. Mater. Interfaces. 2013, 5, 2999–3009. DOI: 10.1021/am302624t.
  • Yin, N.; Du, R.; Zhao, F.; Han, Y.; Zhou, Z. Characterization of Antibacterial Bacterial Cellulose Composite Membranes Modified with Chitosan or Chitooligosaccharide. Carbohydr. Polym. 2020, 229, 115520. DOI: 10.1016/j.carbpol.2019.115520.
  • Zhang, Z.; Abidi, N.; Lucia, L.; Chabi, S.; Denny, C. T.; Parajuli, P.; Rumi, S. S. Cellulose/Nanocellulose Superabsorbent Hydrogels as a Sustainable Platform for Materials Applications: A Mini-Review and Perspective. Carbohydr. Polym. 2023, 299, 120140. DOI: 10.1016/j.carbpol.2022.120140.
  • Low, D. Y. S.; Supramaniam, J.; Soottitantawat, A.; Charinpanitkul, T.; Tanthapanichakoon, W.; Tan, K. W.; Tang, S. Y. Recent Developments in Nanocellulose-Reinforced Rubber Matrix Composites: A Review. Polymers 2021, 13, 550. DOI: 10.3390/polym13040550.
  • Lu, P.; Hsieh, Y.-L. Preparation and Characterization of Cellulose Nanocrystals from Rice Straw. Carbohydr. Polym. 2012, 87, 564–573. DOI: 10.1016/j.carbpol.2011.08.022.
  • Yu, H.-Y.; Qin, Z.-Y.; Liu, L.; Yang, X.-G.; Zhou, Y.; Yao, J.-M. Comparison of the Reinforcing Effects for Cellulose Nanocrystals Obtained by Sulfuric and Hydrochloric Acid Hydrolysis on the Mechanical and Thermal Properties of Bacterial Polyester. Compos. Sci. Technol. 2013, 87, 22–28. DOI: 10.1016/j.compscitech.2013.07.024.
  • Xie, H.; Zou, Z.; Du, H.; Zhang, X.; Wang, X.; Yang, X.; Wang, H.; Li, G.; Li, L.; Si, C. Preparation of Thermally Stable and Surface-Functionalized Cellulose Nanocrystals via Mixed H2SO4/Oxalic Acid Hydrolysis. Carbohydr. Polym. 2019, 223, 115116. DOI: 10.1016/j.carbpol.2019.115116.
  • D, Y.; Z, H.; Y, H.; L, Z.; Q, Y.; Y, L.; C, Q.; S, W. Poly(N-Isopropyl-Acrylamide)/Poly(γ-Glutamic Acid) Thermo-Sensitive Hydrogels Loaded with Superoxide Dismutase for Wound Dressing Application. Int. J. Nanomed. 2020, 15, 1939.
  • Cheng, M.; Qin, Z.; Chen, Y.; Liu, J.; Ren, Z. Facile One-Step Extraction and Oxidative Carboxylation of Cellulose Nanocrystals through Hydrothermal Reaction by Using Mixed Inorganic Acids. Cellulose 2017, 24, 3243–3254. DOI: 10.1007/s10570-017-1339-1.
  • Saelee, K.; Yingkamhaeng, N.; Nimchua, T.; Sukyai, P. An Environmentally Friendly Xylanase-Assisted Pretreatment for Cellulose Nanofibrils Isolation from Sugarcane Bagasse by High-Pressure Homogenization. Ind. Crops Prod. 2016, 82, 149–160. DOI: 10.1016/j.indcrop.2015.11.064.
  • Abdelraof, M.; Hasanin, M. S.; El-Saied, H. Ecofriendly Green Conversion of Potato Peel Wastes to High Productivity Bacterial Cellulose. Carbohydr. Polym. 2019, 211, 75–83. DOI: 10.1016/j.carbpol.2019.01.095.
  • Sharma, C.; Bhardwaj, N. K. Biotransformation of Fermented Black Tea into Bacterial Nanocellulose via Symbiotic Interplay of Microorganisms. Int. J. Biol. Macromol. 2019, 132, 166–177. DOI: 10.1016/j.ijbiomac.2019.03.202.
  • Ruan, C.; Zhu, Y.; Zhou, X.; Abidi, N.; Hu, Y.; Catchmark, J. M. Effect of Cellulose Crystallinity on Bacterial Cellulose Assembly. Cellulose 2016, 23, 3417–3427. DOI: 10.1007/s10570-016-1065-0.
  • Malbaša, R. V.; Lončar, E. S.; Vitas, J. S.; Čanadanović-Brunet, J. M. Influence of Starter Cultures on the Antioxidant Activity of Kombucha Beverage. Food Chem. 2011, 127, 1727–1731. DOI: 10.1016/j.foodchem.2011.02.048.
  • Hungund, B. S.; Gupta, S. Improved Production of Bacterial Cellulose from Gluconacetobacter Persimmonis GH-2. J. Microbial Biochem. Technol. 2010, 02, 127–133. DOI: 10.4172/1948-5948.1000037.
  • Ma, Z.; Chen, P.; Cheng, W.; Yan, K.; Pan, L.; Shi, Y.; Yu, G. Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection. Nano Lett. 2018, 18, 4570–4575. DOI: 10.1021/acs.nanolett.8b01825.
  • Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured Conductive Polypyrrole Hydrogels as High-Performance, Flexible Supercapacitor Electrodes. J. Mater. Chem. A 2014, 2, 6086–6091. DOI: 10.1039/C4TA00484A.
  • Ma, Z.; Shi, W.; Yan, K.; Pan, L.; Yu, G. Doping Engineering of Conductive Polymer Hydrogels and Their Application in Advanced Sensor Technologies. Chem. Sci. 2019, 10, 6232–6244. DOI: 10.1039/c9sc02033k.
  • Lokhande, P.; Chavan, U. S.; Bhosale, S.; Kalam, A.; Deokar, S. New‐Generation Materials for Flexible Supercapacitors. 2021, 277–313.
  • Lin, J.-C.; Liatsis, P.; Alexandridis, P. Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. Polym. Rev. 2023, 63, 67–126. DOI: 10.1080/15583724.2022.2059673.
  • Jämsä, M.; Kosourov, S.; Rissanen, V.; Hakalahti, M.; Pere, J.; Ketoja, J. A.; Tammelin, T.; Allahverdiyeva, Y. Versatile Templates from Cellulose Nanofibrils for Photosynthetic Microbial Biofuel Production. J. Mater. Chem. A 2018, 6, 5825–5835. DOI: 10.1039/C7TA11164A.
  • Han, G.; Huan, S.; Han, J.; Zhang, Z.; Wu, Q. Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites. Materials (Basel) 2013, 7, 16–29. DOI: 10.3390/ma7010016.
  • Luong, N. D.; Korhonen, J. T.; Soininen, A. J.; Ruokolainen, J.; Johansson, L.-S.; Seppälä, J. Processable Polyaniline Suspensions through in Situ Polymerization onto Nanocellulose. Eur. Polym. J. 2013, 49, 335–344. DOI: 10.1016/j.eurpolymj.2012.10.026.
  • Hou, M.; Xu, M.; Hu, Y.; Li, B. Nanocellulose Incorporated Graphene/Polypyrrole Film with a Sandwich-like Architecture for Preparing Flexible Supercapacitor Electrodes. Electrochim. Acta 2019, 313, 245–254. DOI: 10.1016/j.electacta.2019.05.037.
  • Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-Oxidized Cellulose Nanofibers. Nanoscale 2011, 3, 71–85. DOI: 10.1039/c0nr00583e.
  • Du, H.; Liu, C.; Zhang, Y.; Yu, G.; Si, C.; Li, B. Preparation and Characterization of Functional Cellulose Nanofibrils via Formic Acid Hydrolysis Pretreatment and the Followed High-Pressure Homogenization. Ind. Crops Prod. 2016, 94, 736–745. DOI: 10.1016/j.indcrop.2016.09.059.
  • Bian, H.; Dong, M.; Chen, L.; Zhou, X.; Ni, S.; Fang, G.; Dai, H. Comparison of Mixed Enzymatic Pretreatment and Post-Treatment for Enhancing the Cellulose Nanofibrillation Efficiency. Bioresour. Technol. 2019, 293, 122171. DOI: 10.1016/j.biortech.2019.122171.
  • Medeiros, E. S.; Mattoso, L. H.; Bernardes-Filho, R.; Wood, D. F.; Orts, W. J. Self-Assembled Films of Cellulose Nanofibrils and Poly (o-Ethoxyaniline). Colloid Polym. Sci. 2008, 286, 1265–1272. DOI: 10.1007/s00396-008-1887-x.
  • Zhou, J.; Hsieh, Y.-L. Conductive Polymer Protonated Nanocellulose Aerogels for Tunable and Linearly Responsive Strain Sensors. ACS Appl. Mater. Interfaces. 2018, 10, 27902–27910. DOI: 10.1021/acsami.8b10239.
  • Ko, Y.; Kim, J.; Kim, D.; Kwon, G.; Yamauchi, Y.; You, J. Fabrication of Highly Conductive Porous Cellulose/PEDOT: PSS Nanocomposite Paper via Post-Treatment. Nanomaterials 2019, 9, 612. DOI: 10.3390/nano9040612.
  • Aleshin, A. N.; Berestennikov, A. S.; Krylov, P. S.; Shcherbakov, I. P.; Petrov, V. N.; Trapeznikova, IN.; Mamalimov, R. I.; Khripunov, A. K.; Tkachenko, A. A. Electrical and Optical Properties of Bacterial Cellulose Films Modified with Conductive Polymer PEDOT/PSS. Synthetic Metals 2015, 199, 147–151. DOI: 10.1016/j.synthmet.2014.11.022.
  • Yu, H.; Chen, P.; Chen, W.; Liu, Y. Effect of Cellulose Nanofibers on Induced Polymerization of Aniline and Formation of Nanostructured Conducting Composite. Cellulose 2014, 21, 1757–1767. DOI: 10.1007/s10570-014-0189-3.
  • Casado, U. M.; Aranguren, M. I.; Marcovich, N. E. Preparation and Characterization of Conductive Nanostructured Particles Based on Polyaniline and Cellulose Nanofibers. Ultrason. Sonochem. 2014, 21, 1641–1648. DOI: 10.1016/j.ultsonch.2014.03.012.
  • Gopakumar, D. A.; Pai, A. R.; Pottathara, Y. B.; Pasquini, D.; Carlos de Morais, L.; Luke, M.; Kalarikkal, N.; Grohens, Y.; Thomas, S. Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band. ACS Appl. Mater. Interfaces. 2018, 10, 20032–20043. DOI: 10.1021/acsami.8b04549.
  • Silva, M. J.; Sanches, A. O.; Malmonge, L. F.; Medeiros, E. S.; Rosa, M. F.; McMahan, C. M.; Malmonge, J. A. Conductive Nanocomposites Based on Cellulose Nanofibrils Coated with Polyaniline-DBSA via in Situ Polymerization. Macromol. Symp. 2012, 319, 196–202. DOI: 10.1002/masy.201100156.
  • Shariki, S.; Liew, S. Y.; Thielemans, W.; Walsh, D. A.; Cummings, C. Y.; Rassaei, L.; Wasbrough, M. J.; Edler, K. J.; Bonné, M. J.; Marken, F. Tuning Percolation Speed in Layer-by-Layer Assembled Polyaniline–Nanocellulose Composite Films. J. Solid State Electrochem. 2011, 15, 2675–2681. DOI: 10.1007/s10008-010-1261-z.
  • Liu, D. Y.; Sui, G.; Bhattacharyya, D. Synthesis and Characterisation of Nanocellulose-Based Polyaniline Conducting Films. Compos. Sci. Technol. 2014, 99, 31–36. DOI: 10.1016/j.compscitech.2014.05.001.
  • Hu, W.; Chen, S.; Yang, Z.; Liu, L.; Wang, H. Flexible Electrically Conductive Nanocomposite Membrane Based on Bacterial Cellulose and Polyaniline. J. Phys. Chem. B 2011, 115, 8453–8457. DOI: 10.1021/jp204422v.
  • Wang, D.-C.; Yu, H.-Y.; Qi, D.; Ramasamy, M.; Yao, J.; Tang, F.; Tam, K. C.; Ni, Q. Supramolecular Self-Assembly of 3D Conductive Cellulose Nanofiber Aerogels for Flexible Supercapacitors and Ultrasensitive Sensors. ACS Appl. Mater. Interfaces. 2019, 11, 24435–24446. DOI: 10.1021/acsami.9b06527.
  • Esmaeili, C.; Abdi, M. M.; Mathew, A. P.; Jonoobi, M.; Oksman, K.; Rezayi, M. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose. Sensors (Basel) 2015, 15, 24681–24697. DOI: 10.3390/s151024681.
  • Carlsson, D. O.; Sjödin, M.; Nyholm, L.; Strømme, M. A Comparative Study of the Effects of Rinsing and Aging of Polypyrrole/Nanocellulose Composites on Their Electrochemical Properties. J. Phys. Chem. B 2013, 117, 3900–3910. DOI: 10.1021/jp3125582.
  • Nyström, G.; Razaq, A.; Strømme, M.; Nyholm, L.; Mihranyan, A. Ultrafast All-Polymer Paper-Based Batteries. Nano Lett. 2009, 9, 3635–3639. DOI: 10.1021/nl901852h.
  • Thunberg, J.; Kalogeropoulos, T.; Kuzmenko, V.; Hägg, D.; Johannesson, S.; Westman, G.; Gatenholm, P. In Situ Synthesis of Conductive Polypyrrole on Electrospun Cellulose Nanofibers: Scaffold for Neural Tissue Engineering. Cellulose 2015, 22, 1459–1467. DOI: 10.1007/s10570-015-0591-5.
  • Cai, J.; Niu, H.; Li, Z.; Du, Y.; Cizek, P.; Xie, Z.; Xiong, H.; Lin, T. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers. ACS Appl. Mater. Interfaces. 2015, 7, 14946–14953. DOI: 10.1021/acsami.5b03757.
  • Dias, O. A. T.; Konar, S.; Leão, A. L.; Sain, M. Flexible Electrically Conductive Films Based on Nanofibrillated Cellulose and Polythiophene Prepared via Oxidative Polymerization. Carbohydr. Polym. 2019, 220, 79–85. DOI: 10.1016/j.carbpol.2019.05.057.
  • Mihranyan, A.; Esmaeili, M.; Razaq, A.; Alexeichik, D.; Lindström, T. Influence of the Nanocellulose Raw Material Characteristics on the Electrochemical and Mechanical Properties of Conductive Paper Electrodes. J. Mater. Sci. 2012, 47, 4463–4472. DOI: 10.1007/s10853-012-6305-6.
  • Mihranyan, A.; Nyholm, L.; Bennett, A. E. G.; Strømme, M. A Novel High Specific Surface Area Conducting Paper Material Composed of Polypyrrole and Cladophora Cellulose. J. Phys. Chem. B 2008, 112, 12249–12255. DOI: 10.1021/jp805123w.
  • Zhang, Z.; Zhang, J.; Zhao, X.; Yang, F. Core-Sheath Structured Porous Carbon Nanofiber Composite Anode Material Derived from Bacterial Cellulose/Polypyrrole as an Anode for Sodium-Ion Batteries. Carbon 2015, 95, 552–559. DOI: 10.1016/j.carbon.2015.08.069.
  • Zhijiang, C.; Cong, Z.; Ping, X.; Yunming, Q. Preparation, Characterization and Antibacterial Activity of Biodegradable Polyindole/Bacterial Cellulose Conductive Nanocomposite Fiber Membrane. Mater. Lett. 2018, 222, 146–149. DOI: 10.1016/j.matlet.2018.03.203.
  • Han, J.; Ding, Q.; Mei, C.; Wu, Q.; Yue, Y.; Xu, X. An Intrinsically Self-Healing and Biocompatible Electroconductive Hydrogel Based on Nanostructured Nanocellulose-Polyaniline Complexes Embedded in a Viscoelastic Polymer Network towards Flexible Conductors and Electrodes. Electrochim. Acta 2019, 318, 660–672. DOI: 10.1016/j.electacta.2019.06.132.
  • Zhang, X.; Lin, Z.; Chen, B.; Zhang, W.; Sharma, S.; Gu, W.; Deng, Y. Solid-State Flexible Polyaniline/Silver Cellulose Nanofibrils Aerogel Supercapacitors. J. Power Sources 2014, 246, 283–289. DOI: 10.1016/j.jpowsour.2013.07.080.
  • Lyu, S.; Chen, Y.; Zhang, L.; Han, S.; Lu, Y.; Chen, Y.; Yang, N.; Chen, Z.; Wang, S. Nanocellulose Supported Hierarchical Structured Polyaniline/Nanocarbon Nanocomposite Electrode via Layer-by-Layer Assembly for Green Flexible Supercapacitors. RSC Adv. 2019, 9, 17824–17834. DOI: 10.1039/c9ra02449b.
  • Liu, R.; Ma, L.; Huang, S.; Mei, J.; Xu, J.; Yuan, G. A Flexible Polyaniline/Graphene/Bacterial Cellulose Supercapacitor Electrode. New J. Chem. 2017, 41, 857–864. DOI: 10.1039/C6NJ03107B.
  • Mugo, S. M.; Lu, W.; Mundle, T.; Berg, D. Thin Film Composite Conductive Polymers Chemiresistive Sensor and Sample Holder for Methanol Detection in Adulterated Beverages. IEEE Sens. J. 2020, 20, 656–663. DOI: 10.1109/JSEN.2019.2943088.
  • Faria-Tischer, P. C.; Costa, C. A.; Tozetti, I.; Dall’Antonia, L. H.; Vidotti, M. Structure and Effects of Gold Nanoparticles in Bacterial Cellulose–Polyaniline Conductive Membranes. RSC Adv. 2016, 6, 9571–9580. DOI: 10.1039/C5RA25332B.
  • Park, M.; Lee, D.; Shin, S.; Kim, H.-J.; Hyun, J. Flexible Conductive Nanocellulose Combined with Silicon Nanoparticles and Polyaniline. Carbohydr. Polym. 2016, 140, 43–50. DOI: 10.1016/j.carbpol.2015.12.046.
  • Bober, P.; Liu, J.; Mikkonen, K. S.; Ihalainen, P.; Pesonen, M.; Plumed-Ferrer, C.; von Wright, A.; Lindfors, T.; Xu, C.; Latonen, R.-M. Biocomposites of Nanofibrillated Cellulose, Polypyrrole, and Silver Nanoparticles with Electroconductive and Antimicrobial Properties. Biomacromolecules 2014, 15, 3655–3663. DOI: 10.1021/bm500939x.
  • Ewulonu, C. M.; Chukwuneke, J. L.; Nwuzor, I. C.; Achebe, C. H. Fabrication of Cellulose Nanofiber/Polypyrrole/Polyvinylpyrrolidone Aerogels with box-Behnken Design for Optimal Electrical Conductivity. Carbohydr. Polym. 2020, 235, 116028. DOI: 10.1016/j.carbpol.2020.116028.
  • Wu, X.; Tang, J.; Duan, Y.; Yu, A.; Berry, R. M.; Tam, K. C. Conductive Cellulose Nanocrystals with High Cycling Stability for Supercapacitor Applications. J. Mater. Chem. A 2014, 2, 19268–19274. DOI: 10.1039/C4TA04929B.
  • Ding, Q.; Xu, X.; Yue, Y.; Mei, C.; Huang, C.; Jiang, S.; Wu, Q.; Han, J. Nanocellulose-Mediated Electroconductive Self-Healing Hydrogels with High Strength, Plasticity, Viscoelasticity, Stretchability, and Biocompatibility toward Multifunctional Applications. ACS Appl. Mater. Interfaces. 2018, 10, 27987–28002. DOI: 10.1021/acsami.8b09656.
  • Li, N.; Li, X.; Yang, C.; Wang, F.; Li, J.; Wang, H.; Chen, C.; Liu, S.; Pan, Y.; Li, D. Fabrication of a Flexible Free-Standing Film Electrode Composed of Polypyrrole Coated Cellulose Nanofibers/Multi-Walled Carbon Nanotubes Composite for Supercapacitors. RSC Adv. 2016, 6, 86744–86751. DOI: 10.1039/C6RA19529F.
  • Wang, Z.; Tammela, P.; Strømme, M.; Nyholm, L. Nanocellulose Coupled Flexible Polypyrrole@Graphene Oxide Composite Paper Electrodes with High Volumetric Capacitance. Nanoscale 2015, 7, 3418–3423. DOI: 10.1039/c4nr07251k.
  • Ma, L.; Liu, R.; Niu, H.; Zhao, M.; Huang, Y. Flexible and Freestanding Electrode Based on Polypyrrole/Graphene/Bacterial Cellulose Paper for Supercapacitor. Compos. Sci. Technol. 2016, 137, 87–93. DOI: 10.1016/j.compscitech.2016.10.027.
  • Peng, S.; Fan, L.; Wei, C.; Bao, H.; Zhang, H.; Xu, W.; Xu, J. Polypyrrole/Nickel Sulfide/Bacterial Cellulose Nanofibrous Composite Membranes for Flexible Supercapacitor Electrodes. Cellulose 2016, 23, 2639–2651. DOI: 10.1007/s10570-016-0981-3.
  • Peng, S.; Fan, L.; Rao, W.; Bai, Z.; Xu, W.; Xu, J. Bacterial Cellulose Membranes Coated by Polypyrrole/Copper Oxide as Flexible Supercapacitor Electrodes. J. Mater. Sci. 2017, 52, 1930–1942. DOI: 10.1007/s10853-016-0482-7.
  • Peng, S.; Fan, L.; Wei, C.; Liu, X.; Zhang, H.; Xu, W.; Xu, J. Flexible Polypyrrole/Copper Sulfide/Bacterial Cellulose Nanofibrous Composite Membranes as Supercapacitor Electrodes. Carbohydr. Polym. 2017, 157, 344–352. DOI: 10.1016/j.carbpol.2016.10.004.
  • Peng, S.; Xu, Q.; Fan, L.; Wei, C.; Bao, H.; Xu, W.; Xu, J. Flexible Polypyrrole/Cobalt Sulfide/Bacterial Cellulose Composite Membranes for Supercapacitor Application. Synth. Met. 2016, 222, 285–292. DOI: 10.1016/j.synthmet.2016.11.002.
  • Zhang, X.; Wu, X.; Lu, C.; Zhou, Z. Dialysis-Free and in Situ Doping Synthesis of Polypyrrole@Cellulose Nanowhiskers Nanohybrid for Preparation of Conductive Nanocomposites with Enhanced Properties. ACS Sustain. Chem. Eng. 2015, 3, 675–682. DOI: 10.1021/sc500853m.
  • Han, L.; Cui, S.; Yu, H.-Y.; Song, M.; Zhang, H.; Grishkewich, N.; Huang, C.; Kim, D.; Tam, K. M. C. Self-Healable Conductive Nanocellulose Nanocomposites for Biocompatible Electronic Skin Sensor Systems. ACS Appl. Mater. Interfaces. 2019, 11, 44642–44651. DOI: 10.1021/acsami.9b17030.
  • Jradi, K.; Bideau, B.; Chabot, B.; Daneault, C. Characterization of Conductive Composite Films Based on TEMPO-Oxidized Cellulose Nanofibers and Polypyrrole. J. Mater. Sci. 2012, 47, 3752–3762. DOI: 10.1007/s10853-011-6226-9.
  • Jin, S.; Li, K.; Gao, Q.; Zhang, W.; Chen, H.; Li, J. Development of Conductive Protein-Based Film Reinforced by Cellulose Nanofibril Template-Directed Hyperbranched Copolymer. Carbohydr. Polym. 2020, 237, 116141. DOI: 10.1016/j.carbpol.2020.116141.
  • Sasso, C.; Zeno, E.; Petit‐Conil, M.; Chaussy, D.; Belgacem, M. N.; Tapin‐Lingua, S.; Beneventi, D. Highly Conducting Polypyrrole/Cellulose Nanocomposite Films with Enhanced Mechanical Properties. Macromol. Mater. Eng. 2010, 295, 934–941. DOI: 10.1002/mame.201000148.
  • Wang, Z.; Pan, R.; Ruan, C.; Edström, K.; Strømme, M.; Nyholm, L. Redox-Active Separators for Lithium-Ion Batteries. Adv. Sci. (Weinh) 2018, 5, 1700663. DOI: 10.1002/advs.201700663.
  • Hebeish, A.; Farag, S.; Sharaf, S.; Shaheen, T. I. Advancement in Conductive Cotton Fabrics through in Situ Polymerization of Polypyrrole-Nanocellulose Composites. Carbohydr. Polym. 2016, 151, 96–102. DOI: 10.1016/j.carbpol.2016.05.054.
  • Ma, L.; Liu, R.; Niu, H.; Wang, F.; Liu, L.; Huang, Y. Freestanding Conductive Film Based on Polypyrrole/Bacterial Cellulose/Graphene Paper for Flexible Supercapacitor: Large Areal Mass Exhibits Excellent Areal Capacitance. Electrochimica Acta 2016, 222, 429–437. DOI: 10.1016/j.electacta.2016.10.195.
  • Liu, Y.; Zhou, J.; Tang, J.; Tang, W. Three-Dimensional, Chemically Bonded Polypyrrole/Bacterial Cellulose/Graphene Composites for High-Performance Supercapacitors. Chem. Mater. 2015, 27, 7034–7041. DOI: 10.1021/acs.chemmater.5b03060.
  • Pirsa, S.; Shamusi, T.; Kia, E. M. Smart Films Based on Bacterial Cellulose Nanofibers Modified by Conductive Polypyrrole and Zinc Oxide Nanoparticles. J. Appl. Polym. Sci. 2018, 135, 46617. DOI: 10.1002/app.46617.
  • Su, Y.; Zhao, Y.; Zhang, H.; Feng, X.; Shi, L.; Fang, J. Polydopamine Functionalized Transparent Conductive Cellulose Nanopaper with Long-Term Durability. J. Mater. Chem. C 2017, 5, 573–581. DOI: 10.1039/C6TC04928A.
  • Pan, R.; Wang, Z.; Sun, R.; Lindh, J.; Edström, K.; Strømme, M.; Nyholm, L. Polydopamine-Based Redox-Active Separators for Lithium-Ion Batteries. J. Materiom. 2019, 5, 204–213. DOI: 10.1016/j.jmat.2018.12.007.
  • Ležaić, A. J.; Bajuk-Bogdanović, D.; Radoičić, M.; Mirsky, V. M.; Ćirić-Marjanović, G. Influence of Synthetic Conditions on the Structure and Electrical Properties of Nanofibrous Polyanilines and Their Nanofibrous Carbonized Forms. Synth. Met. 2016, 214, 35–44. DOI: 10.1016/j.synthmet.2016.01.015.
  • Golmohammadi, H.; Morales-Narváez, E.; Naghdi, T.; Merkoçi, A. Nanocellulose in Sensing and Biosensing. Chem. Mater. 2017, 29, 5426–5446. DOI: 10.1021/acs.chemmater.7b01170.
  • Zhang, Z.; Lucia, L. Toward Synergistic Reinforced Graphene Nanoplatelets Composite Hydrogels with Self-Healing and Multi-Stimuli Responses. Polymer 2021, 234, 124228. DOI: 10.1016/j.polymer.2021.124228.
  • Afif, A.; Rahman, S. M.; Azad, A. T.; Zaini, J.; Islan, M. A.; Azad, A. K. Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage–a Review. J. Energy Storage 2019, 25, 100852. DOI: 10.1016/j.est.2019.100852.
  • Lokhande, P. E.; Kulkarni, S.; Chakrabarti, S.; Pathan, H. M.; Sindhu, M.; Kumar, D.; Singh, J.; Kumar, A.; Kumar Mishra, Y.; Toncu, D.-C.; et al. The Progress and Roadmap of Metal–Organic Frameworks for High-Performance Supercapacitors. Coord. Chem. Rev. 2022, 473, 214771. DOI: 10.1016/j.ccr.2022.214771.
  • Lokhande, P.; Chavan, U. Inorganic Electrolytes in Supercapacitor. 2019, 11–30.
  • Farah, N.; Ng, H.; Numan, A.; Liew, C.-W.; Latip, N.; Ramesh, K.; Ramesh, S. Solid Polymer Electrolytes Based on Poly (Vinyl Alcohol) Incorporated with Sodium Salt and Ionic Liquid for Electrical Double Layer Capacitor. Mater. Sci. Eng.: B 2019, 251, 114468. DOI: 10.1016/j.mseb.2019.114468.
  • Hou, Y.; Chen, L.; Zhang, L.; Kang, J.; Fujita, T.; Jiang, J.; Chen, M. Ultrahigh Capacitance of Nanoporous Metal Enhanced Conductive Polymer Pseudocapacitors. J. Power Sources 2013, 225, 304–310. DOI: 10.1016/j.jpowsour.2012.10.067.
  • Gupta, S.; Price, C. Investigating Graphene/Conducting Polymer Hybrid Layered Composites as Pseudocapacitors: Interplay of Heterogeneous Electron Transfer, Electric Double Layers and Mechanical Stability. Compos. Part B: Eng. 2016, 105, 46–59. DOI: 10.1016/j.compositesb.2016.08.035.
  • Song, K.; Wu, Q.; Zhang, Z.; Ren, S.; Lei, T.; Negulescu, I. I.; Zhang, Q. Porous Carbon Nanofibers from Electrospun Biomass Tar/Polyacrylonitrile/Silver Hybrids as Antimicrobial Materials. ACS Appl. Mater. Interfaces. 2015, 7, 15108–15116. DOI: 10.1021/acsami.5b04479.
  • Zhang, Z.; Li, L.; Qing, Y.; Lu, X.; Wu, Y.; Yan, N.; Yang, W. Manipulation of Nanoplate Structures in Carbonized Cellulose Nanofibril Aerogel for High-Performance Supercapacitor. J. Phys. Chem. C 2019, 123, 23374–23381. DOI: 10.1021/acs.jpcc.9b06058.
  • Gou, G.; Huang, F.; Jiang, M.; Li, J.; Zhou, Z. Hierarchical Porous Carbon Electrode Materials for Supercapacitor Developed from Wheat Straw Cellulosic Foam. Renew. Energy 2020, 149, 208–216. DOI: 10.1016/j.renene.2019.11.150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.