1,049
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Material Design and Characterization of Conducting Polymer-Based Supercapacitors

, , , , , & show all
Pages 192-250 | Received 02 Jan 2023, Accepted 21 May 2023, Published online: 06 Jun 2023

References

  • Wang, S.; Wei, T.; Qi, Z. Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), Berlin, Heidelberg, 2009; p. 2805.
  • Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent Advancements in Supercapacitor Technology. Nano Energy 2018, 52, 441–473. DOI: 10.1016/j.nanoen.2018.08.013.
  • Buzzoni, L.; Pede, G. 2012 Electrical Systems for Aircraft, Railway and Ship Propulsion, 2012; p. 1.
  • Nikiforidis, G.; Wustoni, S.; Routier, C.; Hama, A.; Koklu, A.; Saleh, A.; Steiner, N.; Druet, V.; Fiumelli, H.; Inal, S. Benchmarking the Performance of Electropolymerized Poly(3,4-Ethylenedioxythiophene) Electrodes for Neural Interfacing. Macromol. Biosci. 2020, 20, 2000215. DOI: 10.1002/mabi.202000215.
  • Wustoni, S.; Saleh, A.; El-Demellawi, J. K.; Koklu, A.; Hama, A.; Druet, V.; Wehbe, N.; Zhang, Y.; Inal, S. MXene Improves the Stability and Electrochemical Performance of Electropolymerized PEDOT Films. APL Mater. 2020, 8, 121105. DOI: 10.1063/5.0023187.
  • Diao, Y.; Chen, H.; Lu, Y.; Santino, L. M.; Wang, H.; D’Arcy, J. M. Converting Rust to PEDOT Nanofibers for Supercapacitors. ACS Appl. Energy Mater. 2019, 2, 3435–3444. DOI: 10.1021/acsaem.9b00244.
  • Ahirrao, D. J.; Pal, A. K.; Singh, V.; Jha, N. Nanostructured Porous Polyaniline (PANI) Coated Carbon Cloth (CC) as Electrodes for Flexible Supercapacitor Device. J. Mater. Sci. Technol. 2021, 88, 168–182. DOI: 10.1016/j.jmst.2021.01.075.
  • Bhattacharya, S.; Roy, I.; Tice, A.; Chapman, C.; Udangawa, R.; Chakrapani, V.; Plawsky, J. L.; Linhardt, R. J. High-Conductivity and High-Capacitance Electrospun Fibers for Supercapacitor Applications. ACS Appl. Mater. Interfaces. 2020, 12, 19369–19376. DOI: 10.1021/acsami.9b21696.
  • Lee, J. E.; Lee, Y.; Ahn, K.-J.; Huh, J.; Shim, H. W.; Sampath, G.; Im, W. B.; Huh, Y. I.; Yoon, H. Role of Co-Vapors in Vapor Deposition Polymerization. Sci. Rep. 2015, 5, 8420. DOI: 10.1038/srep08420.
  • Kurra, N.; Hota, M. K.; Alshareef, H. N. Conducting Polymer Micro-Supercapacitors for Flexible Energy Storage and Ac Line-Filtering. Nano Energy 2015, 13, 500–508. DOI: 10.1016/j.nanoen.2015.03.018.
  • Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.-M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26, 5310–5336. DOI: 10.1002/adma.201400633.
  • Wang, Y.; Ding, Y.; Guo, X.; Yu, G. Conductive Polymers for Stretchable Supercapacitors. Nano Res. 2019, 12, 1978–1987. DOI: 10.1007/s12274-019-2296-9.
  • Shown, I.; Ganguly, A.; Chen, L.-C.; Chen, K.-H. Conducting Polymer-Based Flexible Supercapacitor. Energy Sci. Eng. 2015, 3, 2–26. DOI: 10.1002/ese3.50.
  • Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 2017, 29, 1605336. DOI: 10.1002/adma.201605336.
  • Shao, Y.; El-Kady, M. F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R. B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. DOI: 10.1021/acs.chemrev.8b00252.
  • Patra, A.; K, N.; Jose, J. R.; Sahoo, S.; Chakraborty, B.; Rout, C. S. Understanding the Charge Storage Mechanism of Supercapacitors: In Situ/Operando Spectroscopic Approaches and Theoretical Investigations. J. Mater. Chem. A 2021, 9, 25852–25891. DOI: 10.1039/D1TA07401F.
  • Wang, G.; Zhang, L.; Zhang, J. A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. DOI: 10.1039/c1cs15060j.
  • Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research Progress on Conducting Polymer Based Supercapacitor Electrode Materials. Nano Energy 2017, 36, 268–285. DOI: 10.1016/j.nanoen.2017.04.040.
  • Snook, G. A.; Kao, P.; Best, A. S. Conducting-Polymer-Based Supercapacitor Devices and Electrodes. J. Power Sources 2011, 196, 1–12. DOI: 10.1016/j.jpowsour.2010.06.084.
  • Heeger, A. J. Semiconducting Polymers: The Third Generation. Chem. Soc. Rev. 2010, 39, 2354–2371. DOI: 10.1039/b914956m.
  • Fahlman, M.; Fabiano, S.; Gueskine, V.; Simon, D.; Berggren, M.; Crispin, X. Interfaces in Organic Electronics. Nat. Rev. Mater. 2019, 4, 627–650. DOI: 10.1038/s41578-019-0127-y.
  • Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge Transport in High-Mobility Conjugated Polymers and Molecular Semiconductors. Nat. Mater. 2020, 19, 491–502. DOI: 10.1038/s41563-020-0647-2.
  • de Leeuw, D. M.; Simenon, M. M. J.; Brown, A. R.; Einerhand, R. E. F. Stability of n-Type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices. Synth. Met. 1997, 87, 53–59. DOI: 10.1016/S0379-6779(97)80097-5.
  • Di Pietro, R.; Fazzi, D.; Kehoe, T. B.; Sirringhaus, H. Spectroscopic Investigation of Oxygen- and Water-Induced Electron Trapping and Charge Transport Instabilities in n-Type Polymer Semiconductors. J. Am. Chem. Soc. 2012, 134, 14877–14889. DOI: 10.1021/ja304198e.
  • Giovannitti, A.; Rashid, R. B.; Thiburce, Q.; Paulsen, B. D.; Cendra, C.; Thorley, K.; Moia, D.; Mefford, J. T.; Hanifi, D.; Weiyuan, D.; et al. Energetic Control of Redox-Active Polymers toward Safe Organic Bioelectronic Materials. Adv. Mater. 2020, 32, 1908047. DOI: 10.1002/adma.201908047.
  • Girija, T. C.; Sangaranarayanan, M. V. Polyaniline-Based Nickel Electrodes for Electrochemical Supercapacitors—Influence of Triton X-100. J. Power Sources 2006, 159, 1519–1526. DOI: 10.1016/j.jpowsour.2005.11.078.
  • Kim, J.-Y.; Kim, K. H.; Kim, K. B. Fabrication and Electrochemical Properties of Carbon Nanotube/Polypyrrole Composite Film Electrodes with Controlled Pore Size. J. Power Sources 2008, 176, 396–402. DOI: 10.1016/j.jpowsour.2007.09.117.
  • Anothumakkool, B.; Soni, R.; Bhange, S. N.; Kurungot, S. Novel Scalable Synthesis of Highly Conducting and Robust PEDOT Paper for a High Performance Flexible Solid Supercapacitor. Energy Environ. Sci. 2015, 8, 1339–1347. DOI: 10.1039/C5EE00142K.
  • He, H.; Zhang, L.; Guan, X.; Cheng, H.; Liu, X.; Yu, S.; Wei, J.; Ouyang, J. Biocompatible Conductive Polymers with High Conductivity and High Stretchability. ACS Appl. Mater. Interfaces. 2019, 11, 26185–26193. DOI: 10.1021/acsami.9b07325.
  • Bidinger, S. L.; Han, S.; Malliaras, G. G.; Hasan, T. Highly Stable PEDOT:PSS Electrochemical Transistors. Appl. Phys. Lett. 2022, 120, 073302. DOI: 10.1063/5.0079011.
  • Nie, S.; Li, Z.; Su, Z.; Jin, Y.; Song, H.; Zheng, H.; Song, J.; Hu, L.; Yin, X.; Xu, Z.; et al. Highly Stable Supercapacitors Enabled by a New Conducting Polymer Complex PEDOT:CF3SO2(x)PSS(1-x)**. ChemSusChem 2023, 16, e202202208. DOI: 10.1002/cssc.202202208.
  • Wang, M.; Chen, Q.; Li, H.; Ma, M.; Zhang, N. Stretchable and Shelf-Stable All-Polymer Supercapacitors Based on Sealed Conductive Hydrogels. ACS Appl. Energy Mater. 2020, 3, 8850–8857. DOI: 10.1021/acsaem.0c01343.
  • Yang, J.; Cao, Q.; Tang, X.; Du, J.; Yu, T.; Xu, X.; Cai, D.; Guan, C.; Huang, W. 3D-Printed Highly Stretchable Conducting Polymer Electrodes for Flexible Supercapacitors. J. Mater. Chem. A 2021, 9, 19649–19658. DOI: 10.1039/D1TA02617H.
  • Wang, K.; Zhang, X.; Li, C.; Zhang, H.; Sun, X.; Xu, N.; Ma, Y. Flexible Solid-State Supercapacitors Based on a Conducting Polymer Hydrogel with Enhanced Electrochemical Performance. J. Mater. Chem. A 2014, 2, 19726–19732. DOI: 10.1039/C4TA04924A.
  • Zhang, Y.; Zhang, X.; Yang, K.; Fan, X.; Tong, Y.; Zhang, Z.; Lu, X.; Mai, K.; Ni, Q.; Zhang, M.; et al. Ultrahigh Energy Fiber-Shaped Supercapacitors Based on Porous Hollow Conductive Polymer Composite Fiber Electrodes. J. Mater. Chem. A 2018, 6, 12250–12258. DOI: 10.1039/C8TA03903H.
  • Moussa, M.; El-Kady, M. F.; Dubal, D.; Tung, T. T.; Nine, M. J.; Mohamed, N.; Kaner, R. B.; Losic, D. Self-Assembly and Cross-Linking of Conducting Polymers into 3D Hydrogel Electrodes for Supercapacitor Applications. ACS Appl. Energy Mater. 2020, 3, 923–932. DOI: 10.1021/acsaem.9b02007.
  • Chang, X.; Lin, C.-W.; Huang, A.; El-Kady, M. F.; Kaner, R. B. Molecular Engineering of Hierarchical Conducting Polymer Composites for Highly Stable Supercapacitors. Nano Lett. 2023, 23, 3317–3325. DOI: 10.1021/acs.nanolett.3c00284.
  • Li, X.; Li, Y.; Sarang, K.; Lutkenhaus, J.; Verduzco, R. Side-Chain Engineering for High-Performance Conjugated Polymer Batteries. Adv. Funct. Mater. 2021, 31, 2009263. DOI: 10.1002/adfm.202009263.
  • He, Y.; Kukhta, N. A.; Marks, A.; Luscombe, C. K. The Effect of Side Chain Engineering on Conjugated Polymers in Organic Electrochemical Transistors for Bioelectronic Applications. J. Mater. Chem. C Mater. 2022, 10, 2314–2332. DOI: 10.1039/d1tc05229b.
  • Lota, K.; Khomenko, V.; Frackowiak, E. Capacitance Properties of Poly(3,4-Ethylenedioxythiophene)/Carbon Nanotubes Composites. J. Phys. Chem. Solids 2004, 65, 295–301. DOI: 10.1016/j.jpcs.2003.10.051.
  • Basnayaka, P. A.; Ram, M. K. In Conducting Polymer Hybrids; Kumar, V.; Kalia, S.; Swart, H. C., Eds.; Springer International Publishing: Cham, 2017, DOI: 10.1007/978-3-319-46458-9_6.
  • Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. Nanostructured Polypyrrole as a Flexible Electrode Material of Supercapacitor. Nano Energy 2016, 22, 422–438. DOI: 10.1016/j.nanoen.2016.02.047.
  • Wang, K.; Wu, H.; Meng, Y.; Wei, Z. Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small 2014, 10, 14–31. DOI: 10.1002/smll.201301991.
  • Han, H.; Lee, J. S.; Cho, S. Comparative Studies on Two-Electrode Symmetric Supercapacitors Based on Polypyrrole:Poly(4-Styrenesulfonate) with Different Molecular Weights of Poly(4-Styrenesulfonate). Polymers 2019, 11, 232. DOI: 10.3390/polym11020232.
  • Chen, Y.; Kang, G.; Xu, H.; Kang, L. PPy Doped with Different Metal Sulphate as Electrode Materials for Supercapacitors. Russ. J. Electrochem. 2017, 53, 359–365. DOI: 10.1134/S1023193517040036.
  • Shi, Y.; Pan, L.; Liu, B.; Wang, Y.; Cui, Y.; Bao, Z.; Yu, G. Nanostructured Conductive Polypyrrole Hydrogels as High-Performance, Flexible Supercapacitor Electrodes. J. Mater. Chem. A 2014, 2, 6086–6091. DOI: 10.1039/C4TA00484A.
  • Giridharagopal, R.; Guo, J.; Kong, J.; Ginger, D. S. Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors. ACS Appl. Mater. Interfaces. 2021, 13, 34616–34624. DOI: 10.1021/acsami.1c08176.
  • Huang, L.; Wang, Z.; Chen, J.; Wang, B.; Chen, Y.; Huang, W.; Chi, L.; Marks, T. J.; Facchetti, A. Porous Semiconducting Polymers Enable High-Performance Electrochemical Transistors. Adv. Mater. 2021, 33, 2007041. DOI: 10.1002/adma.202007041.
  • Asen, P.; Shahrokhian, S. A High Performance Supercapacitor Based on Graphene/Polypyrrole/Cu2O–Cu(OH)2 Ternary Nanocomposite Coated on Nickel Foam. J. Phys. Chem. C 2017, 121, 6508–6519. DOI: 10.1021/acs.jpcc.7b00534.
  • Dubal, D. P.; Ballesteros, B.; Mohite, A. A.; Gómez-Romero, P. Functionalization of Polypyrrole Nanopipes with Redox-Active Polyoxometalates for High Energy Density Supercapacitors. ChemSusChem 2017, 10, 731–737. DOI: 10.1002/cssc.201601610.
  • Afzal, A.; Abuilaiwi, F. A.; Habib, A.; Awais, M.; Waje, S. B.; Atieh, M. A. Polypyrrole/Carbon Nanotube Supercapacitors: Technological Advances and Challenges. J. Power Sources 2017, 352, 174–186. DOI: 10.1016/j.jpowsour.2017.03.128.
  • Tong, L.; Gao, M.; Jiang, C.; Cai, K. Ultra-High Performance and Flexible Polypyrrole Coated CNT Paper Electrodes for All-Solid-State Supercapacitors. J. Mater. Chem. A 2019, 7, 10751–10760. DOI: 10.1039/C9TA01856E.
  • Zhou, J.; Zhao, H.; Mu, X.; Chen, J.; Zhang, P.; Wang, Y.; He, Y.; Zhang, Z.; Pan, X.; Xie, E. Importance of Polypyrrole in Constructing 3D Hierarchical Carbon Nanotube@MnO2 Perfect Core–Shell Nanostructures for High-Performance Flexible Supercapacitors. Nanoscale 2015, 7, 14697–14706. DOI: 10.1039/c5nr03426d.
  • Choudhary, R. B.; Ansari, S.; Purty, B. Robust Electrochemical Performance of Polypyrrole (PPy) and Polyindole (PIn) Based Hybrid Electrode Materials for Supercapacitor Application: A Review. J. Energy Storage 2020, 29, 101302. DOI: 10.1016/j.est.2020.101302.
  • Sardar, A.; Gupta, P. S. Polypyrrole Based Nanocomposites for Supercapacitor Applications: A Review. AIP Conf. Proc. 2018, 1953, 030020.
  • Chee, W. K.; Lim, H. N.; Harrison, I.; Chong, K. F.; Zainal, Z.; Ng, C. H.; Huang, N. M. Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration. Electrochim. Acta 2015, 157, 88–94. DOI: 10.1016/j.electacta.2015.01.080.
  • Mohd Abdah, M. A. A.; Mohammed Modawe Aldris Edris, N.; Kulandaivalu, S.; Abdul Rahman, N.; Sulaiman, Y. Supercapacitor with Superior Electrochemical Properties Derived from Symmetrical Manganese Oxide-Carbon Fiber Coated with Polypyrrole. Int. J. Hydrogen Energy 2018, 43, 17328–17337. DOI: 10.1016/j.ijhydene.2018.07.093.
  • El Nady, J.; Shokry, A.; Khalil, M.; Ebrahim, S.; Elshaer, A. M.; Anas, M. One-Step Electrodeposition of a Polypyrrole/NiO Nanocomposite as a Supercapacitor Electrode. Sci. Rep. 2022, 12, 3611. DOI: 10.1038/s41598-022-07483-y.
  • Cherusseri, J.; Kar, K. K. Ultra-Flexible Fibrous Supercapacitors with Carbon Nanotube/Polypyrrole Brush-like Electrodes. J. Mater. Chem. A 2016, 4, 9910–9922. DOI: 10.1039/C6TA02690G.
  • Qin, T.; Liu, B.; Wen, Y.; Wang, Z.; Jiang, X.; Wan, Z.; Peng, S.; Cao, G.; He, D. Freestanding Flexible Graphene Foams@Polypyrrole@MnO2 Electrodes for High-Performance Supercapacitors. J. Mater. Chem. A 2016, 4, 9196–9203. DOI: 10.1039/C6TA02835G.
  • Barazandeh, M.; Kazemi, S. H. High-Performance Freestanding Supercapacitor Electrode Based on Polypyrrole Coated Nickel Cobalt Sulfide Nanostructures. Sci. Rep. 2022, 12, 4628. DOI: 10.1038/s41598-022-08691-2.
  • Athira, A. R.; Vimuna, V. M.; Tomy, M.; Babu, K. V. D.; Alex, S.; Xavier, T. S. Surfactant Intercalated Polypyrrole-Exfoliated Graphene Oxide Hybrid Thin Film Symmetric Supercapacitor. J. Mater. Sci. 2022, 57, 6749–6762. DOI: 10.1007/s10853-022-07075-1.
  • Zhang, J.; Chen, Q.; Zhang, H.; Hou, Y.; Guo, J. High-Performance Polypyrrole Coated Filter Paper Electrode for Flexible All-Solid-State Supercapacitor. J. Electrochem. Soc. 2020, 167, 140533. DOI: 10.1149/1945-7111/abc659.
  • Ullah, R.; Khan, N.; Khattak, R.; Khan, M.; Khan, M. S.; Ali, O. M. Preparation of Electrochemical Supercapacitor Based on Polypyrrole/Gum Arabic Composites. Polymers 2022, 14, 242. DOI: 10.3390/polym14020242.
  • He, Y.; Ning, X.; Wan, L. Ultrathin Graphene Oxide@Polypyrrole Nanosheets as a Supercapacitor Electrode with High Areal Specific Capacitance. Polym. Bull. 2022, 79, 9075–9091. DOI: 10.1007/s00289-021-03948-8.
  • Liang, J.; Xiang, C.; Zou, Y.; Hu, X.; Chu, H.; Qiu, S.; Xu, F.; Sun, L. Spacing Graphene and Ni-Co Layered Double Hydroxides with Polypyrrole for High-Performance Supercapacitors. J. Mater. Sci. Technol. 2020, 55, 190–197. DOI: 10.1016/j.jmst.2019.10.030.
  • Bhadra, J.; Alkareem, A.; Al-Thani, N. A Review of Advances in the Preparation and Application of Polyaniline Based Thermoset Blends and Composites. J. Polym. Res. 2020, 27, 122. DOI: 10.1007/s10965-020-02052-1.
  • Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A. R.; Lim, H. N. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—a Review. Polymers 2021, 13, 2003. DOI: 10.3390/polym13122003.
  • Hafizah, M. E.; Bimantoro, A.; Manaf, A.; Andreas. Synthesized of Conductive Polyaniline by Solution Polymerization Technique. Proced. Chem. 2016, 19, 162–165. DOI: 10.1016/j.proche.2016.03.088.
  • Liu, S.; Liu, D.; Pan, Z. The Effect of Polyaniline (PANI) Coating via Dielectric-Barrier Discharge (DBD) Plasma on Conductivity and Air Drag of Polyethylene Terephthalate (PET) Yarn. Polymers 2018, 10, 351. DOI: 10.3390/polym10040351.
  • Park, O.-K.; Kim, N. H.; Yoo, G.-H.; Rhee, K. Y.; Lee, J. H. Effects of the Surface Treatment on the Properties of Polyaniline Coated Carbon Nanotubes/Epoxy Composites. Compos. Part B: Eng. 2010, 41, 2–7. DOI: 10.1016/j.compositesb.2009.10.002.
  • Abed, M. Y.; Youssif, M. A.; Aziz, H. A.; Shenashen, M. A. Synthesis and Enhancing Electrical Properties of PANI and PPA Composites. Egypt. J. Petrol. 2014, 23, 271–277. DOI: 10.1016/j.ejpe.2014.08.003.
  • Yoo, J. E.; Cross, J. L.; Bucholz, T. L.; Lee, K. S.; Espe, M. P.; Loo, Y.-L. Improving the Electrical Conductivity of Polymer Acid-Doped Polyaniline by Controlling the Template Molecular Weight. J. Mater. Chem. 2007, 17, 1268. DOI: 10.1039/b618521e.
  • Dogra, A. R.; Khandelwal, M.; Kumar, A.; Khanra, P.; Kumar, P. Study on Morphology and Conductivity Behavior of Synthesized Polyaniline. AIP Conf. Proc. 2020, 2220, 140020.
  • Miao, Y.-E.; Fan, W.; Chen, D.; Liu, T. High-Performance Supercapacitors Based on Hollow Polyaniline Nanofibers by Electrospinning. ACS Appl. Mater. Interfaces. 2013, 5, 4423–4428. DOI: 10.1021/am4008352.
  • Chaudhari, S.; Sharma, Y.; Archana, P. S.; Jose, R.; Ramakrishna, S.; Mhaisalkar, S.; Srinivasan, M. Electrospun Polyaniline Nanofibers Web Electrodes for Supercapacitors. J. Appl. Polym. Sci. 2013, 129, 1660–1668. DOI: 10.1002/app.38859.
  • Ma, Y.; Hou, C.; Zhang, H.; Qiao, M.; Chen, Y.; Zhang, H.; Zhang, Q.; Guo, Z. Morphology-Dependent Electrochemical Supercapacitors in Multi-Dimensional Polyaniline Nanostructures. J. Mater. Chem. A 2017, 5, 14041–14052. DOI: 10.1039/C7TA03279J.
  • Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chem. Mater. 2010, 22, 1392–1401. DOI: 10.1021/cm902876u.
  • Kuzhandaivel, H.; Manickam, S.; Balasingam, S. K.; Franklin, M. C.; Kim, H.-J.; Nallathambi, K. S. Sulfur and Nitrogen-Doped Graphene Quantum Dots/PANI Nanocomposites for Supercapacitors. New J. Chem. 2021, 45, 4101–4110. DOI: 10.1039/D1NJ00038A.
  • Liu, Z.; Zhao, Z.; Xu, A.; Li, W.; Qin, Y. Facile Preparation of Graphene/Polyaniline Composite Hydrogel Film by Electrodeposition for Binder-Free All-Solid-State Supercapacitor. J. Alloys Compds. 2021, 875, 159931. DOI: 10.1016/j.jallcom.2021.159931.
  • Che, B.; Li, H.; Zhou, D.; Zhang, Y.; Zeng, Z.; Zhao, C.; He, C.; Liu, E.; Lu, X. Porous Polyaniline/Carbon Nanotube Composite Electrode for Supercapacitors with Outstanding Rate Capability and Cyclic Stability. Compos. Part B: Eng. 2019, 165, 671–678. DOI: 10.1016/j.compositesb.2019.02.026.
  • Deshmukh, P. R.; Patil, S. V.; Bulakhe, R. N.; Sartale, S. D.; Lokhande, C. D. Inexpensive Synthesis Route of Porous Polyaniline–Ruthenium Oxide Composite for Supercapacitor Application. Chem. Eng. J. 2014, 257, 82–89. DOI: 10.1016/j.cej.2014.06.038.
  • Deshmukh, P. R.; Bulakhe, R. N.; Pusawale, S. N.; Sartale, S. D.; Lokhande, C. D. Polyaniline–RuO2 Composite for High Performance Supercapacitors: Chemical Synthesis and Properties. RSC Adv. 2015, 5, 28687–28695. DOI: 10.1039/C4RA16969G.
  • Singu, B. S.; Palaniappan, S.; Yoon, K. R. Polyaniline–Nickel Oxide Nanocomposites for Supercapacitor. J. Appl. Electrochem. 2016, 46, 1039–1047. DOI: 10.1007/s10800-016-0988-3.
  • Cai, X.; Cui, X.; Zu, L.; Zhang, Y.; Gao, X.; Lian, H.; Liu, Y.; Wang, X. Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials. Polymers 2017, 9, 288. DOI: 10.3390/polym9070288.
  • Jadhav, S. A.; Dhas, S. D.; Patil, K. T.; Moholkar, A. V.; Patil, P. S. Polyaniline (PANI)-Manganese Dioxide (MnO2) Nanocomposites as Efficient Electrode Materials for Supercapacitors. Chem. Phys. Lett. 2021, 778, 138764. DOI: 10.1016/j.cplett.2021.138764.
  • Yasoda, K. Y.; Kumar, M. S.; Batabyal, S. K. Polyaniline Decorated Manganese Oxide Nanoflakes Coated Graphene Oxide as a Hybrid-Supercapacitor for High Performance Energy Storage Application. Ionics 2020, 26, 2493–2500. DOI: 10.1007/s11581-019-03294-w.
  • Ansari, S. A.; Parveen, N.; Han, T. H.; Ansari, M. O.; Cho, M. H. Fibrous Polyaniline@Manganese Oxide Nanocomposites as Supercapacitor Electrode Materials and Cathode Catalysts for Improved Power Production in Microbial Fuel Cells. Phys. Chem. Chem. Phys. 2016, 18, 9053–9060. DOI: 10.1039/c6cp00159a.
  • Singh, G.; Husain, S. In Nanomaterials for Innovative Energy Systems and Devices; Khan, Z. H., Ed.; Springer Nature Singapore: Singapore, 2022, DOI: 10.1007/978-981-19-0553-7_13.
  • Banerjee, J.; Dutta, K.; Kader, M. A.; Nayak, S. K. An Overview on the Recent Developments in Polyaniline-Based Supercapacitors. Polym. Adv. Technol. 2019, 30, 1902–1921. DOI: 10.1002/pat.4624.
  • Wang, X.; Wu, D.; Song, X.; Du, W.; Zhao, X.; Zhang, D. Review on Carbon/Polyaniline Hybrids: Design and Synthesis for Supercapacitor. Molecules 2019, 24, 2263. DOI: 10.3390/molecules24122263.
  • He, Y.; Wang, X.; Huang, H.; Zhang, P.; Chen, B.; Guo, Z. In-Situ Electropolymerization of Porous Conducting Polyaniline Fibrous Network for Solid-State Supercapacitor. Appl. Surf. Sci. 2019, 469, 446–455. DOI: 10.1016/j.apsusc.2018.10.180.
  • Yu, H.; Ge, X.; Bulin, C.; Xing, R.; Li, R.; Xin, G.; Zhang, B. Facile Fabrication and Energy Storage Analysis of Graphene/PANI Paper Electrodes for Supercapacitor Application. Electrochim. Acta 2017, 253, 239–247. DOI: 10.1016/j.electacta.2017.09.071.
  • Liu, J.; Du, P.; Wang, Q.; Liu, D.; Liu, P. Mild Synthesis of Holey N-Doped Reduced Graphene Oxide and Its Double-Edged Effects in Polyaniline Hybrids for Supercapacitor Application. Electrochim. Acta 2019, 305, 175–186. DOI: 10.1016/j.electacta.2019.03.049.
  • Zheng, X.; Yu, H.; Xing, R.; Ge, X.; Sun, H.; Li, R.; Zhang, Q. Multi-Growth Site Graphene/Polyaniline Composites with Highly Enhanced Specific Capacitance and Rate Capability for Supercapacitor Application. Electrochim. Acta 2018, 260, 504–513. DOI: 10.1016/j.electacta.2017.12.100.
  • Gao, S.; Zhang, L.; Qiao, Y.; Dong, P.; Shi, J.; Cao, S. Electrodeposition of Polyaniline on Three-Dimensional Graphene Hydrogel as a Binder-Free Supercapacitor Electrode with High Power and Energy Densities. RSC Adv. 2016, 6, 58854–58861. DOI: 10.1039/C6RA06263F.
  • Shen, H.; Li, H.; Li, M.; Li, C.; Qian, L.; Su, L.; Yang, B. High-Performance Aqueous Symmetric Supercapacitor Based on Polyaniline/Vertical Graphene/Ti Multilayer Electrodes. Electrochim. Acta 2018, 283, 410–418. DOI: 10.1016/j.electacta.2018.06.182.
  • Viswanathan, A.; Shetty, A. N. Facile in-Situ Single Step Chemical Synthesis of Reduced Graphene Oxide-Copper Oxide-Polyaniline Nanocomposite and Its Electrochemical Performance for Supercapacitor Application. Electrochim. Acta 2017, 257, 483–493. DOI: 10.1016/j.electacta.2017.10.099.
  • Ghosh, K.; Yue, C. Y.; Sk, M. M.; Jena, R. K. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO2@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application. ACS Appl. Mater. Interfaces. 2017, 9, 15350–15363. DOI: 10.1021/acsami.6b16406.
  • Sahu, V.; Marichi, R. B.; Singh, G.; Sharma, R. K. Hierarchical Polyaniline Spikes over Vegetable Oil Derived Carbon Aerogel for Solid-State Symmetric/Asymmetric Supercapacitor. Electrochim. Acta 2017, 240, 146–154. DOI: 10.1016/j.electacta.2017.04.058.
  • Hao, Q.; Xia, X.; Lei, W.; Wang, W.; Qiu, J. Facile Synthesis of Sandwich-like Polyaniline/Boron-Doped Graphene Nano Hybrid for Supercapacitors. Carbon 2015, 81, 552–563. DOI: 10.1016/j.carbon.2014.09.090.
  • Zhong, F.; Ma, M.; Zhong, Z.; Lin, X.; Chen, M. Interfacial Growth of Free-Standing PANI Films: Toward High-Performance All-Polymer Supercapacitors. Chem. Sci. 2021, 12, 1783–1790. DOI: 10.1039/d0sc05061j.
  • Patil, B. H.; Patil, S. J.; Lokhande, C. D. Electrochemical Characterization of Chemically Synthesized Polythiophene Thin Films: Performance of Asymmetric Supercapacitor Device. Electroanalysis 2014, 26, 2023–2032. DOI: 10.1002/elan.201400284.
  • Patil, B. H.; Jagadale, A. D.; Lokhande, C. D. Synthesis of Polythiophene Thin Films by Simple Successive Ionic Layer Adsorption and Reaction (SILAR) Method for Supercapacitor Application. Synt. Met. 2012, 162, 1400–1405. DOI: 10.1016/j.synthmet.2012.05.023.
  • Wustoni, S.; Nikiforidis, G.; Inal, S.; Indartono, Y. S.; Suendo, V.; Yuliarto, B. Hydroxymethyl PEDOT Microstructure-Based Electrodes for High-Performance Supercapacitors. APL Mater. 2022, 10, 061101. DOI: 10.1063/5.0088452.
  • Rajesh, M.; Raj, C. J.; Manikandan, R.; Kim, B. C.; Park, S. Y.; Yu, K. H. A High Performance PEDOT/PEDOT Symmetric Supercapacitor by Facile in-Situ Hydrothermal Polymerization of PEDOT Nanostructures on Flexible Carbon Fibre Cloth Electrodes. Mater. Today Energy 2017, 6, 96–104. DOI: 10.1016/j.mtener.2017.09.003.
  • He, X.; Yang, W.; Mao, X.; Xu, L.; Zhou, Y.; Chen, Y.; Zhao, Y.; Yang, Y.; Xu, J. All-Solid State Symmetric Supercapacitors Based on Compressible and Flexible Free-Standing 3D Carbon Nanotubes (CNTs)/Poly(3,4-Ethylenedioxythiophene) (PEDOT) Sponge Electrodes. J. Power Sources 2018, 376, 138–146. DOI: 10.1016/j.jpowsour.2017.09.084.
  • Ahmed, S.; Rafat, M.; Singh, M. K.; Hashmi, S. A. A Free-Standing, Flexible PEDOT:PSS Film and Its Nanocomposites with Graphene Nanoplatelets as Electrodes for Quasi-Solid-State Supercapacitors. Nanotechnology 2018, 29, 395401. DOI: 10.1088/1361-6528/aad0b8.
  • Fong, K. D.; Wang, T.; Kim, H.-K.; Kumar, R. V.; Smoukov, S. K. Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes. ACS Energy Lett. 2017, 2, 2014–2020. DOI: 10.1021/acsenergylett.7b00466.
  • Liu, H.; Gong, Y.; Li, X.; Zhang, X.; Hu, C.; Wang, L.; Pang, Y.; Fang, C. The Effect of in-Situ Polymerization on PEDOT-PSS/PAN Composite Conductive Fiber. IOP Conf. Ser.: Earth Environ. Sci. 2019, 218, 012161. DOI: 10.1088/1755-1315/218/1/012161.
  • Tang, P.; Han, L.; Zhang, L. Facile Synthesis of Graphite/PEDOT/MnO2 Composites on Commercial Supercapacitor Separator Membranes as Flexible and High-Performance Supercapacitor Electrodes. ACS Appl. Mater. Interfaces. 2014, 6, 10506–10515. DOI: 10.1021/am5021028.
  • Zhang, C.; Higgins, T. M.; Park, S.-H.; O'Brien, S. E.; Long, D.; Coleman, J. N.; Nicolosi, V. Highly Flexible and Transparent Solid-State Supercapacitors Based on RuO2/PEDOT:PSS Conductive Ultrathin Films. Nano Energy 2016, 28, 495. DOI: 10.1016/j.nanoen.2016.08.052.
  • Mohanadas, D.; Mohd Abdah, M. A. A.; Azman, N. H. N.; Ravoof, T. B. S. A.; Sulaiman, Y. Facile Synthesis of PEDOT-rGO/HKUST-1 for High Performance Symmetrical Supercapacitor Device. Sci. Rep. 2021, 11, 11747. DOI: 10.1038/s41598-021-91100-x.
  • Wang, B.; Liu, S.; Liu, L.; Song, W.-W.; Zhang, Y.; Wang, S.-M.; Han, Z.-B. MOF/PEDOT/HPMo-Based Polycomponent Hierarchical Hollow Micro-Vesicles for High Performance Flexible Supercapacitors. J. Mater. Chem. A 2021, 9, 2948. DOI: 10.1039/D0TA10603H.
  • Li, J.; Levitt, A.; Kurra, N.; Juan, K.; Noriega, N.; Xiao, X.; Wang, X.; Wang, H.; Alshareef, H. N.; Gogotsi, Y. MXene-Conducting Polymer Electrochromic Microsupercapacitors. Energy Storage Mater. 2019, 20, 455. DOI: 10.1016/j.ensm.2019.04.028.
  • Li, L.; Wei, Z.; Liang, J.; Ma, J.; Huang, S. High-Performance Supercapacitor Electrode Materials of MoS2/PPY Nanocomposites Prepared by in-Situ Oxidative Polymerization Method. Results Chem. 2021, 3, 100205. DOI: 10.1016/j.rechem.2021.100205.
  • Volkov, A. I.; Ivanov, A. V.; Vereshchagin, A. A.; Novoselova, J. V.; Tolstopjatova, E. G.; Kondratiev, V. V. Electrochemical Deposition of PEDOT/MoS2 Composite Films for Supercapacitors. Synth. Met. 2022, 285, 117030. DOI: 10.1016/j.synthmet.2022.117030.
  • Zhao, Z.; Richardson, G. F.; Meng, Q.; Zhu, S.; Kuan, H.-C.; Ma, J. PEDOT-Based Composites as Electrode Materials for Supercapacitors. Nanotechnology 2016, 27, 042001. DOI: 10.1088/0957-4484/27/4/042001.
  • Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F. H.; Ouyang, J. Review on Application of PEDOTs and PEDOT:PSS in Energy Conversion and Storage Devices. J. Mater. Sci.: Mater. Electron. 2015, 26, 4438.
  • Brooke, R.; Lay, M.; Jain, K.; Francon, H.; Say, M. G.; Belaineh, D.; Wang, X.; Håkansson, K. M. O.; Wågberg, L.; Engquist, I. Nanocellulose and PEDOT:PSS Composites and Their Applications. Polym. Rev. 2022, 63. DOI: 10.1080/15583724.2022.2106491.
  • Ye, G.; Xu, J.; Ma, X.; Zhou, Q.; Li, D.; Zuo, Y.; Lv, L.; Zhou, W.; Duan, X. One-Step Electrodeposition of Free-Standing Flexible Conducting PEDOT Derivative Film and Its Electrochemical Capacitive and Thermoelectric Performance. Electrochim. Acta 2017, 224, 125. DOI: 10.1016/j.electacta.2016.12.042.
  • Li, B.; Lopez-Beltran, H.; Siu, C.; Skorenko, K. H.; Zhou, H.; Bernier, W. E.; Whittingham, M. S.; Jones, W. E. Vaper Phase Polymerized PEDOT/Cellulose Paper Composite for Flexible Solid-State Supercapacitor. ACS Appl. Energy Mater. 2020, 3, 1559. DOI: 10.1021/acsaem.9b02044.
  • Tang, P.; Zhao, Y.; Xu, C. Step-by-Step Assembled Poly(3,4-Ethylenedioxythiophene)/Manganese Dioxide Composite Electrodes: Tuning the Structure for High Electrochemical Performance. Electrochim. Acta 2013, 89, 300. DOI: 10.1016/j.electacta.2012.11.034.
  • Li, Y.; Ren, G.; Zhang, Z.; Teng, C.; Wu, Y.; Lu, X.; Zhu, Y.; Jiang, L. A Strong and Highly Flexible Aramid Nanofibers/PEDOT:PSS Film for All-Solid-State Supercapacitors with Superior Cycling Stability. J. Mater. Chem. A 2016, 4, 17324–17332. DOI: 10.1039/C6TA06981A.
  • Manjakkal, L.; Pullanchiyodan, A.; Yogeswaran, N.; Hosseini, E. S.; Dahiya, R. A Wearable Supercapacitor Based on Conductive PEDOT:PSS-Coated Cloth and a Sweat Electrolyte. Adv. Mater. 2020, 32, 1907254. DOI: 10.1002/adma.201907254.
  • Patil, D. S.; Pawar, S. A.; Shin, J. C. Silver Decorated PEDOT:PSS Wrapped MnO2 Nanowires for Electrochemical Supercapacitor Applications. J. Ind. Eng. Chem. 2018, 62, 166–175. DOI: 10.1016/j.jiec.2017.12.054.
  • Su, Z.; Jin, Y.; Xiao, Y.; Zheng, H.; Yang, Z.; Wang, H.; Li, Z. Excellent Rate Capability Supercapacitor Based on a Free-Standing PEDOT:PSS Film Enabled by the Hydrothermal Method. Chem. Commun. (Camb) 2022, 58, 5088–5091. DOI: 10.1039/d2cc00427e.
  • Pandey, G. P.; Rastogi, A. C.; Westgate, C. R. All-Solid-State Supercapacitors with Poly(3,4-Ethylenedioxythiophene)-Coated Carbon Fiber Paper Electrodes and Ionic Liquid Gel Polymer Electrolyte. J. Power Sources 2014, 245, 857–865. DOI: 10.1016/j.jpowsour.2013.07.017.
  • Rajesh, M.; Manikandan, R.; Kim, B. C.; Becuwe, M.; Yu, K. H.; Raj, C. J. Electrochemical Polymerization of Chloride Doped PEDOT Hierarchical Porous Nanostructure on Graphite as a Potential Electrode for High Performance Supercapacitor. Electrochim. Acta 2020, 354, 136669. DOI: 10.1016/j.electacta.2020.136669.
  • Wustoni, S.; Nikiforidis, G.; Ohayon, D.; Inal, S.; Indartono, Y. S.; Suendo, V.; Yuliarto, B. Performance of PEDOTOH/PEO-Based Supercapacitors in Agarose Gel Electrolyte. Chem. Asian J. 2022, 17, e202200427.
  • Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-Based Polymer Nanocomposites. Polymer 2011, 52, 5–25. DOI: 10.1016/j.polymer.2010.11.042.
  • Usman, M.; Adnan, M.; Ahsan, M. T.; Javed, S.; Butt, M. S.; Akram, M. A. In Situ Synthesis of a Polyaniline/Fe–Ni Codoped Co3O4 Composite for the Electrode Material of Supercapacitors with Improved Cyclic Stability. ACS Omega 2021, 6, 1190–1196. DOI: 10.1021/acsomega.0c04306.
  • Fu, X.; Chen, A.; Yu, Y.; Hou, S.; Liu, L. Carbon Nanotube@N-Doped Mesoporous Carbon Composite Material for Supercapacitor Electrodes. Chem. Asian J. 2019, 14, 634–639. DOI: 10.1002/asia.201801865.
  • Dutta, T. K.; Patra, A. Post-Synthetic Modification of Covalent Organic Frameworks through in Situ Polymerization of Aniline for Enhanced Capacitive Energy Storage. Chem. Asian J. 2021, 16, 158–164. DOI: 10.1002/asia.202001216.
  • Shahabuddin, S.; Mazlan, N. A.; Baharin, S. N. A.; Sambasevam, K. P. In Advances in Hybrid Conducting Polymer Technology; Shahabuddin, S.;Pandey, A. K.;Khalid, M.;Jagadish, P., Eds.; Springer International Publishing: Cham, 2021, DOI: 10.1007/978-3-030-62090-5_1.
  • Wustoni, S.; Hidalgo, T. C.; Hama, A.; Ohayon, D.; Savva, A.; Wei, N.; Wehbe, N.; Inal, S. In Situ Electrochemical Synthesis of a Conducting Polymer Composite for Multimetabolite Sensing. Adv. Mater. Technol. 2020, 5, 1900943. DOI: 10.1002/admt.201900943.
  • Nayak, P. D.; Ohayon, D.; Wustoni, S.; Inal, S. Tailoring Electropolymerized Poly(3,4-Ethylenedioxythiophene) Films for Oxygen Reduction Reaction. Adv. Mater. Technol. 2022, 7, 2100277. DOI: 10.1002/admt.202100277.
  • Wustoni, S.; Combe, C.; Ohayon, D.; Akhtar, M. H.; McCulloch, I.; Inal, S. Membrane-Free Detection of Metal Cations with an Organic Electrochemical Transistor. Adv. Funct. Mater. 2019, 29, 1904403. DOI: 10.1002/adfm.201904403.
  • Zhang, M.; Nautiyal, A.; Du, H.; Wei, Z.; Zhang, X.; Wang, R. Electropolymerization of Polyaniline as High-Performance Binder Free Electrodes for Flexible Supercapacitor. Electrochim. Acta 2021, 376, 138037. DOI: 10.1016/j.electacta.2021.138037.
  • Von Tumacder, D.; Morávková, Z.; Minisy, I. M.; Hromádková, J.; Bober, P. Electropolymerized Polypyrrole/safranin-O Films: Capacitance Enhancement. Polymer 2021, 230, 124099. DOI: 10.1016/j.polymer.2021.124099.
  • Chen, Q.; Miao, X.; Liu, Y.; Zhang, X.; Chen, S.; Chen, Z.; Chen, Y.; Lin, J.; Zhang, Y. Polyaniline Electropolymerized within Template of Vertically Ordered Polyvinyl Alcohol as Electrodes of Flexible Supercapacitors with Long Cycle Life. Electrochim. Acta 2021, 390, 138819. DOI: 10.1016/j.electacta.2021.138819.
  • Mujawar, S. H.; Ambade, S. B.; Battumur, T.; Ambade, R. B.; Lee, S.-H. Electropolymerization of Polyaniline on Titanium Oxide Nanotubes for Supercapacitor Application. Electrochim. Acta 2011, 56, 4462–4466. DOI: 10.1016/j.electacta.2011.02.043.
  • Wolfart, F.; Dubal, D. P.; Vidotti, M.; Holze, R.; Gómez-Romero, P. Electrochemical Supercapacitive Properties of Polypyrrole Thin Films: Influence of the Electropolymerization Methods. J. Solid State Electrochem. 2016, 20, 901–910. DOI: 10.1007/s10008-015-2960-2.
  • Neacşu, I. A.; Nicoară, A. I.; Vasile, O. R.; Vasile, B. Ş. In Nanobiomaterials in Hard Tissue Engineering; Grumezescu, A. M., Ed.; William Andrew Publishing: Norwich, 2016, DOI: 10.1016/B978-0-323-42862-0.00009-2.
  • Landau, M. V. In Handbook of Heterogeneous Catalysis; Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. DOI: 10.1002/9783527610044.hetcat0009.
  • Katoch, A.; Burkhart, M.; Hwang, T.; Kim, S. S. Synthesis of Polyaniline/TiO2 Hybrid Nanoplates via a Sol–Gel Chemical Method. Chem. Eng. J. 2012, 192, 262–268. DOI: 10.1016/j.cej.2012.04.004.
  • Yang, P.; Ma, L.; Gan, M.; Lei, Y.; Zhang, X.; Jin, M.; Fu, G. Preparation and Application of PANI/N-Doped Porous Carbon under the Protection of ZnO for Supercapacitor Electrode. J. Mater. Sci.: Mater. Electron. 2017, 28, 7333–7342. DOI: 10.1007/s10854-017-6420-x.
  • Joshi, N. C.; Dhiman, R.; Kimothi, S.; Kumar, N.; Semwal, P.; Gajraj, V. Synthesis and Supercapacitive Performances of PPY@MoO3 Based Nanocomposite Material. J. Sol-Gel Sci. Technol. 2022, 104, 178–188. DOI: 10.1007/s10971-022-05928-4.
  • Guo, G.; Sun, Y.; Fu, Q.; Ma, Y.; Zhou, Y.; Xiong, Z.; Liu, Y. Sol-Gel Synthesis of Ternary Conducting Polymer Hydrogel for Application in All-Solid-State Flexible Supercapacitor. Int. J. Hydrogen Energy 2019, 44, 6103–6115. DOI: 10.1016/j.ijhydene.2019.01.080.
  • Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. Chemical Vapour Deposition. Nat. Rev. Methods Prim. 2021, 1, 5. DOI: 10.1038/s43586-020-00005-y.
  • Kim, Y. K.; Shin, K.-Y. Dopamine-Assisted Chemical Vapour Deposition of Polypyrrole on Graphene for Flexible Supercapacitor. Appl. Surf. Sci. 2021, 547, 149141. DOI: 10.1016/j.apsusc.2021.149141.
  • Kafle, B. P. In Chemical Analysis and Material Characterization by Spectrophotometry; Kafle, B. P., Ed.; Elsevier: Amsterdam, The Netherlands, 2020, DOI: 10.1016/B978-0-12-814866-2.00006-3.
  • Rajesh, M.; Raj, C. J.; Kim, B. C.; Manikandan, R.; Kim, S.-J.; Park, S. Y.; Lee, K.; Yu, K. H. Expeditious and Eco-Friendly Hydrothermal Polymerization of PEDOT Nanoparticles for Binder-Free High Performance Supercapacitor Electrodes. RSC Adv. 2016, 6, 110433–110443. DOI: 10.1039/C6RA22958A.
  • Zhang, S.; Pan, N. Supercapacitors Performance Evaluation. Adv. Energy Mater. 2015, 5, 1401401. DOI: 10.1002/aenm.201401401.
  • Yasoda, K. Y.; Kumar, S.; Kumar, M. S.; Ghosh, K.; Batabyal, S. K. Fabrication of MnS/GO/PANI Nanocomposites on a Highly Conducting Graphite Electrode for Supercapacitor Application. Mater. Today Chem. 2021, 19, 100394. DOI: 10.1016/j.mtchem.2020.100394.
  • Rao, S. S.; Kanaka Durga, I.; Naresh, B.; Jin-Soo, B.; Krishna, T. N. V.; In-Ho, C.; Ahn, J.-W.; Kim, H.-J. One-Pot Hydrothermal Synthesis of Novel Cu-MnS with PVP Cabbage-Like Nanostructures for High-Performance Supercapacitors. Energies 2018, 11, 1590. DOI: 10.3390/en11061590.
  • Bilal, S. In Encyclopedia of Applied Electrochemistry; Kreysa, G.;Ota, K.-i.;Savinell, R. F., Eds.; Springer New York: New York, NY, 2014, DOI: 10.1007/978-1-4419-6996-5_220.
  • Yang, Z.; Shi, D.; Dong, W.; Chen, M. Self-Standing Hydrogels Composed of Conducting Polymers for All-Hydrogel-State Supercapacitors. Chemistry 2020, 26, 1846–1855. DOI: 10.1002/chem.201904357.
  • Esarev, I. V.; Agafonov, D. V.; Surovikin, Y. V.; Nesov, S. N.; Lavrenov, A. V. On the Causes of Non-Linearity of Galvanostatic Charge Curves of Electrical Double Layer Capacitors. Electrochim. Acta 2021, 390, 138896. DOI: 10.1016/j.electacta.2021.138896.
  • Zeng, L.; Wu, T.; Ye, T.; Mo, T.; Qiao, R.; Feng, G. Modeling Galvanostatic Charge–Discharge of Nanoporous Supercapacitors. Nat. Comput. Sci. 2021, 1, 725–731. DOI: 10.1038/s43588-021-00153-5.
  • Sharma, P.; Kumar, V. Investigation of the Behaviour of Supercapacitors Using Theoretical Models. Phys. B: Condens. Matter 2021, 619, 413212. DOI: 10.1016/j.physb.2021.413212.
  • Nikiforidis, G.; Wustoni, S.; Ohayon, D.; Druet, V.; Inal, S. A Self-Standing Organic Supercapacitor to Power Bioelectronic Devices. ACS Appl. Energy Mater. 2020, 3, 7896–7907. DOI: 10.1021/acsaem.0c01299.
  • Sakita, A. M. P.; Della Noce, R.; Lavall, R. L. Potential-Dependent Electrochemical Impedance Spectroscopy as a Powerful Tool for Evaluating Supercapacitor Electrode Performance. J. Electrochem. Soc. 2021, 168, 080525. DOI: 10.1149/1945-7111/ac1cfc.
  • Farooq, F.; Khan, A.; Lee, S. J.; Mahad Nadeem, M.; Choi, W. A Multi-Channel Fast Impedance Spectroscopy Instrument Developed for Quality Assurance of Super-Capacitors. Energies 2021, 14, 1139. DOI: 10.3390/en14041139.
  • Lukács, Z.; Kristóf, T. A Generalized Model of the Equivalent Circuits in the Electrochemical Impedance Spectroscopy. Electrochim. Acta 2020, 363, 137199. DOI: 10.1016/j.electacta.2020.137199.
  • Negroiu, R.; Svasta, P.; Pirvu, C.; Vasile, A.; Marghescu, C. 2017 40th International Spring Seminar on Electronics Technology (ISSE), 2017; p 1.
  • Laschuk, N. O.; Easton, E. B.; Zenkina, O. V. Reducing the Resistance for the Use of Electrochemical Impedance Spectroscopy Analysis in Materials Chemistry. RSC Adv. 2021, 11, 27925–27936. DOI: 10.1039/d1ra03785d.
  • Wang, S.; Zhang, J.; Gharbi, O.; Vivier, V.; Gao, M.; Orazem, M. E. Electrochemical Impedance Spectroscopy. Nat. Rev. Methods Prim. 2021, 1, 41. DOI: 10.1038/s43586-021-00039-w.
  • Chen, J.; Lee, P. S. Electrochemical Supercapacitors: From Mechanism Understanding to Multifunctional Applications. Adv. Energy Mater. 2021, 11, 2003311. DOI: 10.1002/aenm.202003311.
  • Hou, L.; Bao, R.; Denis, D. k.; Sun, X.; Zhang, J.; Zaman, F. u.; Yuan, C. Synthesis of Ultralong ZnFe2O4@Polypyrrole Nanowires with Enhanced Electrochemical Li-Storage Behaviors for Lithium-Ion Batteries. Electrochim. Acta 2019, 306, 198–208. DOI: 10.1016/j.electacta.2019.03.121.
  • Ruch, P. W.; Hahn, M.; Rosciano, F.; Holzapfel, M.; Kaiser, H.; Scheifele, W.; Schmitt, B.; Novák, P.; Kötz, R.; Wokaun, A. In Situ X-Ray Diffraction of the Intercalation of (C2H5)4N + and BF4− into Graphite from Acetonitrile and Propylene Carbonate Based Supercapacitor Electrolytes. Electrochim. Acta 2007, 53, 1074–1082. DOI: 10.1016/j.electacta.2007.01.069.
  • Karpfen, A.; Kertesz, M. Energetics and Geometry of Conducting Polymers from Oligomers. J. Phys. Chem. 1991, 95, 7680–7681. DOI: 10.1021/j100173a024.
  • Bozzini, B.; Gianoncelli, A.; Bocchetta, P.; Dal Zilio, S.; Kourousias, G. Fabrication of a Sealed Electrochemical Microcell for in Situ Soft X-Ray Microspectroscopy and Testing with in Situ Co-Polypyrrole Composite Electrodeposition for Pt-Free Oxygen Electrocatalysis. Anal. Chem. 2014, 86, 664–670. DOI: 10.1021/ac403004v.
  • Watanabe, N.; Morais, J.; Alves, M. C. M. Design of an Electrochemical Cell for in Situ XAS Studies. J. Electron Spectrosc. Related Phenomena 2007, 156-158, 164–167. DOI: 10.1016/j.elspec.2006.12.021.
  • Hummer, A. A.; Rompel, A. In Advances in Protein Chemistry and Structural Biology; Christov, C. Z., Ed.; Academic Press, 2013; Vol. 93.
  • Bozzini, B.; Bocchetta, P.; Gianoncelli, A. Coelectrodeposition of Ternary Mn-Oxide/Polypyrrole Composites for ORR Electrocatalysts: A Study Based on Micro-X-Ray Absorption Spectroscopy and X-Ray Fluorescence Mapping. Energies 2015, 8, 8145–8164. DOI: 10.3390/en8088145.
  • Bozzini, B.; Bocchetta, P.; Alemán, B.; Amati, M.; Gianoncelli, A.; Gregoratti, L.; Sezen, H.; Taurino, A.; Kiskinova, M. Electrodeposition and Pyrolysis of Mn/Polypyrrole Nanocomposites: A Study Based on Soft X-Ray Absorption, Fluorescence and Photoelectron Microspectroscopies. J. Mater. Chem. A 2015, 3, 19155–19167. DOI: 10.1039/C5TA05572E.
  • Bozzini, B.; Bocchetta, P.; Kourousias, G.; Gianoncelli, A. Electrodeposition of Mn-Co/Polypyrrole Nanocomposites: An Electrochemical and in Situ Soft-X-Ray Microspectroscopic Investigation. Polymers 2017, 9, 17. DOI: 10.3390/polym9010017.
  • Weckhuysen, B. M. Snapshots of a Working Catalyst: Possibilities and Limitations of in Situ Spectroscopy in the Field of Heterogeneous Catalysis. Chem. Commun. 2002, 97–110. DOI: 10.1039/b107686h.
  • Cao, C.; Steinrück, H.-G.; Shyam, B.; Stone, K. H.; Toney, M. F. In Situ Study of Silicon Electrode Lithiation with X-Ray Reflectivity. Nano Lett. 2016, 16, 7394–7401. DOI: 10.1021/acs.nanolett.6b02926.
  • Lakner, P. H.; Brinker, M.; Seitz, C.; Jacobse, L.; Vonk, V.; Lippmann, M.; Volkov, S.; Huber, P.; Keller, T. F. Probing the Electrolyte Transfer in Ultrathin Polypyrrole Films by in Situ X-Ray Reflectivity and Electrochemistry. Langmuir 2020, 36, 13448–13456. DOI: 10.1021/acs.langmuir.0c02068.
  • Zeng, Z.; Liang, W.-I.; Chu, Y.-H.; Zheng, H. In Situ TEM Study of the Li–Au Reaction in an Electrochemical Liquid Cell. Faraday Discuss. 2014, 176, 95–107. DOI: 10.1039/c4fd00145a.
  • Han, C.; Islam, M. T.; Ni, C. In Situ TEM of Electrochemical Incidents: Effects of Biasing and Electron Beam on Electrochemistry. ACS Omega 2021, 6, 6537–6546. DOI: 10.1021/acsomega.0c05829.
  • Fahrenkrug, E.; Alsem, D. H.; Salmon, N.; Maldonado, S. Electrochemical Measurements in in Situ TEM Experiments. J. Electrochem. Soc. 2017, 164, H358–H364. DOI: 10.1149/2.1041706jes.
  • Akbari Garakani, M.; Abouali, S.; Cui, J.; Kim, J.-K. In Situ TEM Study of Lithiation into a PPy Coated α-MnO2/Graphene Foam Freestanding Electrode. Mater. Chem. Front. 2018, 2, 1481–1488. DOI: 10.1039/C8QM00153G.
  • Li, S.; Wi, T.-U.; Ji, M.; Cui, Z.; Lee, H.-W.; Lu, Z. The Role of Polymer and Inorganic Coatings to Enhance Interparticle Connections Diagnosed by in Situ Techniques. Nano Lett. 2021, 21, 1530–1537. DOI: 10.1021/acs.nanolett.0c05035.
  • Xie, Z.-H.; Jiang, Z.; Zhang, X. Review—Promises and Challenges of in Situ Transmission Electron Microscopy Electrochemical Techniques in the Studies of Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A2110–A2123. DOI: 10.1149/2.1451709jes.
  • Bukowska, J.; Jackowska, K. In Situ Raman Studies of Polypyrrole and Polythiophene Films on Pt Electrodes. Synth. Met. 1990, 35, 143–150. DOI: 10.1016/0379-6779(90)90037-L.
  • Bilal, S.; Ali Shah, A-u-H.; Holze, R. Spectroelectrochemistry of Poly(o-Phenylenediamine): Polyaniline-like Segments in the Polymer Structure. Electrochim. Acta 2011, 56, 3353–3358. DOI: 10.1016/j.electacta.2011.01.005.
  • Bocchetta, P.; Gianoncelli, A.; Abyaneh, M. K.; Kiskinova, M.; Amati, M.; Gregoratti, L.; Jezeršek, D.; Mele, C.; Bozzini, B. Electrosynthesis of Co/PPy Nanocomposites for ORR Electrocatalysis: A Study Based on Quasi-in Situ X-Ray Absorption, Fluorescence and in Situ Raman Spectroscopy. Electrochim. Acta 2014, 137, 535–545. DOI: 10.1016/j.electacta.2014.05.098.
  • Nekrasov, A. A.; Iakobson, O. D.; Gribkova, O. L. Raman Spectroelectrochemical Study of Pyrrole Electropolymerization in the Presence of Sulfonated Polyelectrolytes. Electrochim. Acta 2021, 390, 138869. DOI: 10.1016/j.electacta.2021.138869.
  • Blacha-Grzechnik, A.; Turczyn, R.; Burek, M.; Zak, J. In Situ Raman Spectroscopic Studies on Potential-Induced Structural Changes in Polyaniline Thin Films Synthesized via Surface-Initiated Electropolymerization on Covalently Modified Gold Surface. Vibrat. Spectrosc. 2014, 71, 30–36. DOI: 10.1016/j.vibspec.2014.01.008.
  • Morávková, Z.; Dmitrieva, E. Structural Changes in Polyaniline near the Middle Oxidation Peak Studied by in Situ Raman Spectroelectrochemistry. J. Raman Spectrosc. 2017, 48, 1229–1234. DOI: 10.1002/jrs.5197.
  • Li, K.; Liu, X.; Chen, S.; Pan, W.; Zhang, J. A Flexible Solid-State Supercapacitor Based on Graphene/Polyaniline Paper Electrodes. J. Energy Chem. 2019, 32, 166–173. DOI: 10.1016/j.jechem.2018.07.014.
  • Huerta, F.; Quijada, C.; Montilla, F.; Morallón, E. Revisiting the Redox Transitions of Polyaniline. Semiquantitative Interpretation of Electrochemically Induced IR Bands. J. Electroanal. Chem. 2021, 897, 115593. DOI: 10.1016/j.jelechem.2021.115593.
  • Kellenberger, A.; Dmitrieva, E.; Dunsch, L. Structure Dependence of Charged States in “Linear” Polyaniline as Studied by in Situ ATR-FTIR Spectroelectrochemistry. J. Phys. Chem. B 2012, 116, 4377–4385. DOI: 10.1021/jp211595n.
  • Kellenberger, A.; Dmitrieva, E.; Dunsch, L. The Stabilization of Charged States at Phenazine-like Units in Polyaniline under p-Doping: An in situATR-FTIR Spectroelectrochemical Study. Phys. Chem. Chem. Phys. 2011, 13, 3411–3420. DOI: 10.1039/c0cp01264e.
  • Bieberle-Hütter, A.; Bronneberg, A. C.; George, K.; van de Sanden, M. C. M. Operando Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) Spectroscopy for Water Splitting. J. Phys. D: Appl. Phys. 2021, 54, 133001. DOI: 10.1088/1361-6463/abd435.
  • Chen, H.; Qin, Z.; He, M.; Liu, Y.; Wu, Z. Application of Electrochemical Atomic Force Microscopy (EC-AFM) in the Corrosion Study of Metallic Materials. Materials 2020, 13, 668. DOI: 10.3390/ma13030668.
  • Zhong, J.; Ma, M.; Zhou, J.; Wei, D.; Yan, Z.; He, D. Tip-Induced Micropatterning of Silk Fibroin Protein Using in Situ Solution Atomic Force Microscopy. ACS Appl. Mater. Interfaces. 2013, 5, 737–746. DOI: 10.1021/am302271g.
  • Singh, P. R.; Mahajan, S.; Rajwade, S.; Contractor, A. Q. EC-AFM Investigation of Reversible Volume Changes with Electrode Potential in Polyaniline. J. Electroanal. Chem. 2009, 625, 16–26. DOI: 10.1016/j.jelechem.2008.10.005.
  • Mocaër, A.; Pillier, F.; Pailleret, A. Switching of the Ion Exchange Behaviour of PEDOT Thin Films during a Potential Cycling: An Electrochemical Atomic Force Microscopy Study. Electrochim. Acta 2021, 389, 138651. DOI: 10.1016/j.electacta.2021.138651.
  • Aleksandrova, E.; Hiesgen, R.; Andreas Friedrich, K.; Roduner, E. Electrochemical Atomic Force Microscopy Study of Proton Conductivity in a Nafion Membrane. Phys. Chem. Chem. Phys. 2007, 9, 2735–2743. DOI: 10.1039/b617516c.
  • Wu, D.; Zhang, J.; Dong, W.; Chen, H.; Huang, X.; Sun, B.; Chen, L. Temperature Dependent Conductivity of Vapor-Phase Polymerized PEDOT Films. Synth. Met. 2013, 176, 86–91. DOI: 10.1016/j.synthmet.2013.05.033.
  • Wei, K.; Kim, I. S. In Electrospun Nanofibers for Energy and Environmental Applications; Ding, B.;Yu, J., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014, DOI: 10.1007/978-3-642-54160-5_7.
  • Miao, Y.-E.; Yan, J.; Huang, Y.; Fan, W.; Liu, T. Electrospun Polymer Nanofiber Membrane Electrodes and an Electrolyte for Highly Flexible and Foldable All-Solid-State Supercapacitors. RSC Adv. 2015, 5, 26189–26196. DOI: 10.1039/C5RA00138B.
  • Bashir, S.; Hasan, K.; Hina, M.; Ali Soomro, R.; Mujtaba, M. A.; Ramesh, S.; Ramesh, K.; Duraisamy, N.; Manikam, R. Conducting Polymer/Graphene Hydrogel Electrodes Based Aqueous Smart Supercapacitors: A Review and Future Prospects. J. Electroanal. Chem. 2021, 898, 115626. DOI: 10.1016/j.jelechem.2021.115626.
  • Yang, Q.; Pang, S.-K.; Yung, K.-C. Study of PEDOT–PSS in Carbon Nanotube/Conducting Polymer Composites as Supercapacitor Electrodes in Aqueous Solution. J. Electroanal. Chem. 2014, 728, 140–147. DOI: 10.1016/j.jelechem.2014.06.033.
  • Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. An Ultrafast Conducting Polymer@MXene Positive Electrode with High Volumetric Capacitance for Advanced Asymmetric Supercapacitors. Small 2020, 16, 1906851. DOI: 10.1002/smll.201906851.
  • Mulik, S. V.; Jadhav, S. A.; Patil, P. S.; Delekar, S. D. In Advances in Metal Oxides and Their Composites for Emerging Applications; Delekar, S. D., Ed.; Elsevier: Amsterdam, The Netherland, 2022, DOI: 10.1016/B978-0-323-85705-5.00006-3.
  • Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731. DOI: 10.1021/ja7106178.
  • Raymundo-Piñero, E.; Kierzek, K.; Machnikowski, J.; Béguin, F. Relationship between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes. Carbon 2006, 44, 2498–2507. DOI: 10.1016/j.carbon.2006.05.022.
  • Kleszyk, P.; Ratajczak, P.; Skowron, P.; Jagiello, J.; Abbas, Q.; Frąckowiak, E.; Béguin, F. Carbons with Narrow Pore Size Distribution Prepared by Simultaneous Carbonization and Self-Activation of Tobacco Stems and Their Application to Supercapacitors. Carbon 2015, 81, 148–157. DOI: 10.1016/j.carbon.2014.09.043.
  • Kim, Y. J.; Horie, Y.; Ozaki, S.; Matsuzawa, Y.; Suezaki, H.; Kim, C.; Miyashita, N.; Endo, M. Correlation between the Pore and Solvated Ion Size on Capacitance Uptake of PVDC-Based Carbons. Carbon 2004, 42, 1491–1500. DOI: 10.1016/j.carbon.2004.01.049.
  • Zang, X.; Shen, C.; Sanghadasa, M.; Lin, L. High-Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem 2019, 6, 976–988. DOI: 10.1002/celc.201801225.
  • Liu, J.-C.; Huang, Z.-H.; Ma, T.-Y. Aqueous Supercapacitor with Ultrahigh Voltage Window beyond 2.0 Volt. Small Struct. 2020, 1, 2000020. DOI: 10.1002/sstr.202000020.
  • Chang, J.; Jin, M.; Yao, F.; Kim, T. H.; Le, V. T.; Yue, H.; Gunes, F.; Li, B.; Ghosh, A.; Xie, S.; et al. Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density. Adv. Funct. Mater. 2013, 23, 5074–5083. DOI: 10.1002/adfm201301851.
  • Peng, L.; Wei, X.; Song, K.; Peng, H.; Li, L.; Hu, J.; Yang, Y.; Zhang, H.; Xiao, P. The Effect of Work Function Difference between Cathode and Anode Materials on the Potential Window of the Supercapacitor. Electrochim. Acta 2020, 332, 135479. DOI: 10.1016/j.electacta.2019.135479.
  • Sajjad, M.; Khan, M. I.; Cheng, F.; Lu, W. A Review on Selection Criteria of Aqueous Electrolytes Performance Evaluation for Advanced Asymmetric Supercapacitors. J. Energy Storage 2021, 40, 102729. DOI: 10.1016/j.est.2021.102729.
  • Kurra, N.; Wang, R.; Alshareef, H. N. All Conducting Polymer Electrodes for Asymmetric Solid-State Supercapacitors. J. Mater. Chem. A 2015, 3, 7368–7374. DOI: 10.1039/C5TA00829H.
  • Volkov, A. V.; Sun, H.; Kroon, R.; Ruoko, T.-P.; Che, C.; Edberg, J.; Müller, C.; Fabiano, S.; Crispin, X. Asymmetric Aqueous Supercapacitor Based on p- and n-Type Conducting Polymers. ACS Appl. Energy Mater. 2019, 2, 5350–5355. DOI: 10.1021/acsaem.9b00853.
  • Kinlen, P. J.; Mbugua, J.; Kim, Y.-G.; Jung, J.-H.; Viswanathan, S. Supercapacitors Using n and p-Type Conductive Polymers Exhibiting Metallic Conductivity. ECS Trans. 2010, 25, 157–162. DOI: 10.1149/1.3414014.
  • Moia, D.; Giovannitti, A.; Szumska, A. A.; Maria, I. P.; Rezasoltani, E.; Sachs, M.; Schnurr, M.; Barnes, P. R. F.; McCulloch, I.; Nelson, J. Design and Evaluation of Conjugated Polymers with Polar Side Chains as Electrode Materials for Electrochemical Energy Storage in Aqueous Electrolytes. Energy Environ. Sci. 2019, 12, 1349–1357. DOI: 10.1039/C8EE03518K.
  • Meng, W.; Xia, Y.; Ma, C.; Du, X. Electrodeposited Polyaniline Nanofibers and MoO3 Nanobelts for High-Performance Asymmetric Supercapacitor with Redox Active Electrolyte. Polymers 2020, 12, 2303. DOI: 10.3390/polym12102303.
  • Huang, Y.; Zhu, M.; Meng, W.; Fu, Y.; Wang, Z.; Huang, Y.; Pei, Z.; Zhi, C. Robust Reduced Graphene Oxide Paper Fabricated with a Household Non-Stick Frying Pan: A Large-Area Freestanding Flexible Substrate for Supercapacitors. RSC Adv. 2015, 5, 33981–33989. DOI: 10.1039/C5RA02868J.
  • Hou, Y.; Chen, L.; Liu, P.; Kang, J.; Fujita, T.; Chen, M. Nanoporous Metal Based Flexible Asymmetric Pseudocapacitors. J. Mater. Chem. A 2014, 2, 10910–10916. DOI: 10.1039/C4TA00969J.
  • Halder, L.; Kumar Das, A.; Maitra, A.; Bera, A.; Paria, S.; Karan, S. K.; Si, S. K.; Ojha, S.; De, A.; Khatua, B. B. A Polypyrrole-Adorned, Self-Supported, Pseudocapacitive Zinc Vanadium Oxide Nanoflower and Nitrogen-Doped Reduced Graphene Oxide-Based Asymmetric Supercapacitor Device for Power Density Applications. New J. Chem. 2020, 44, 1063–1075. DOI: 10.1039/C9NJ05546K.
  • Chen, Y.; Yang, H.; Han, Z.; Bo, Z.; Yan, J.; Cen, K.; Ostrikov, K. K. MXene-Based Electrodes for Supercapacitor Energy Storage. Energy Fuels 2022, 36, 2390–2406. DOI: 10.1021/acs.energyfuels.1c04104.
  • Ma, R.; Chen, Z.; Zhao, D.; Zhang, X.; Zhuo, J.; Yin, Y.; Wang, X.; Yang, G.; Yi, F. Ti3C2Tx MXene for Electrode Materials of Supercapacitors. J. Mater. Chem. A 2021, 9, 11501–11529. DOI: 10.1039/D1TA00681A.
  • Li, K.; Wang, X.; Wang, X.; Liang, M.; Nicolosi, V.; Xu, Y.; Gogotsi, Y. All-Pseudocapacitive Asymmetric MXene-Carbon-Conducting Polymer Supercapacitors. Nano Energy 2020, 75, 104971. DOI: 10.1016/j.nanoen.2020.104971.
  • Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors. Adv. Energy Mater. 2018, 8, 1703043. DOI: 10.1002/aenm.201703043.
  • Wu, J.; Li, Q.; Shuck, C. E.; Maleski, K.; Alshareef, H. N.; Zhou, J.; Gogotsi, Y.; Huang, L. An Aqueous 2.1 V Pseudocapacitor with MXene and V-MnO2 Electrodes. Nano Res. 2022, 15, 535–541. DOI: 10.1007/s12274-021-3513-x.
  • Boota, M.; Bécuwe, M.; Gogotsi, Y. Phenothiazine–MXene Aqueous Asymmetric Pseudocapacitors. ACS Appl. Energy Mater. 2020, 3, 3144–3149. DOI: 10.1021/acsaem.9b02404.
  • Liu, L.; Li, H.-Y.; Yu, Y.; Liu, L.; Wu, Y. Silver Nanowires as the Current Collector for a Flexible in-Plane Micro-Supercapacitor via a One-Step, Mask-Free Patterning Strategy. Nanotechnology 2018, 29, 055401. DOI: 10.1088/1361-6528/aa9aaf.
  • Xu, J.; Ding, J.; Zhou, X.; Zhang, Y.; Zhu, W.; Liu, Z.; Ge, S.; Yuan, N.; Fang, S.; Baughman, R. H. Enhanced Rate Performance of Flexible and Stretchable Linear Supercapacitors Based on Polyaniline@Au@Carbon Nanotube with Ultrafast Axial Electron Transport. J. Power Sources 2017, 340, 302–308. DOI: 10.1016/j.jpowsour.2016.11.085.
  • Alipoori, S.; Mazinani, S.; Aboutalebi, S. H.; Sharif, F. Review of PVA-Based Gel Polymer Electrolytes in Flexible Solid-State Supercapacitors: Opportunities and Challenges. J. Energy Storage 2020, 27, 101072. DOI: 10.1016/j.est.2019.101072.
  • Alipoori, S.; Torkzadeh, M. M.; Mazinani, S.; Aboutalebi, S. H.; Sharif, F. Performance-Tuning of PVA-Based Gel Electrolytes by Acid/PVA Ratio and PVA Molecular Weight. SN Appl. Sci. 2021, 3, 310. DOI: 10.1007/s42452-021-04182-7.
  • Zhang, N.; Zhou, W.; Zhang, Q.; Luan, P.; Cai, L.; Yang, F.; Zhang, X.; Fan, Q.; Zhou, W.; Xiao, Z.; et al. Biaxially Stretchable Supercapacitors Based on the Buckled Hybrid Fiber Electrode Array. Nanoscale 2015, 7, 12492–12497. DOI: 10.1039/c5nr03027g.
  • Lyu, L.; Hooch Antink, W.; Kim, Y. S.; Kim, C. W.; Hyeon, T.; Piao, Y. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. Small 2021, 17, 2101974. DOI: 10.1002/smll.202101974.
  • Keum, K.; Kim, J. W.; Hong, S. Y.; Son, J. G.; Lee, S.-S.; Ha, J. S. Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Adv. Mater. 2020, 32, 2002180. DOI: 10.1002/adma.202002180.
  • Li, L.; Lou, Z.; Chen, D.; Jiang, K.; Han, W.; Shen, G. Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics. Small 2018, 14, 1702829. DOI: 10.1002/smll.201702829.
  • Liu, Y.; Weng, B.; Razal, J. M.; Xu, Q.; Zhao, C.; Hou, Y.; Seyedin, S.; Jalili, R.; Wallace, G. G.; Chen, J. High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films. Sci. Rep. 2015, 5, 17045. DOI: 10.1038/srep17045.
  • Sharma, S.; Kaur, G.; Dalvi, A. Improving Interfaces in All-Solid-State Supercapacitors Using Polymer-Added Activated Carbon Electrodes. Batteries 2023, 9, 81. DOI: 10.3390/batteries9020081.
  • Parejiya, A.; Amin, R.; Dixit, M. B.; Essehli, R.; Jafta, C. J.; Wood, D. L.; Belharouak, I. Improving Contact Impedance via Electrochemical Pulses Applied to Lithium–Solid Electrolyte Interface in Solid-State Batteries. ACS Energy Lett. 2021, 6, 3669–3675. DOI: 10.1021/acsenergylett.1c01573.
  • Kaur, G.; Sivasubramanian, S. C.; Dalvi, A. Solid-State Supercapacitors Using Ionic Liquid Dispersed Li+-NASICONs as Electrolytes. Electrochim. Acta 2022, 434, 141311. DOI: 10.1016/j.electacta.2022.141311.
  • Zhao, C.; Jia, X.; Shu, K.; Yu, C.; Wallace, G. G.; Wang, C. Conducting Polymer Composites for Unconventional Solid-State Supercapacitors. J. Mater. Chem. A 2020, 8, 4677–4699. DOI: 10.1039/C9TA13432H.
  • Vignesh, V.; Manikandan, M.; Srinivasan, M.; Venkatesh, G.; Vignesh, S.; In Elavarasan, N.; Palanisamy, G.; Ramasamy, P. Smart Supercapacitors; Hussain, C. M.;Ahamed, M. B., Eds.; Elsevier: Amsterdam, The Netherland, 2023, DOI: 10.1016/B978-0-323-90530-5.00005-8.
  • Huang, S.; Zhu, X.; Sarkar, S.; Zhao, Y. Challenges and Opportunities for Supercapacitors. APL Mater. 2019, 7, 100901. DOI: 10.1063/1.5116146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.