896
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

3D Printing of Covalent Adaptable Networks: Overview, Applications and Future Prospects

, , ORCID Icon, , &
Pages 36-79 | Received 23 Jan 2023, Accepted 23 Apr 2023, Published online: 30 Jun 2023

References

  • Standard, A. F2792-12a. Standard Terminology for Additive Manufacturing Technologies; ASTM International: West Conshohocken, 2012.
  • Hull, C. W. Apparatus for Production of Three-Dimensional Objects by Stereolithography, March 11,1986.
  • Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R. B. Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review. Addit. Manuf. 2018, 21, 1–16. DOI: 10.1016/j.addma.2018.01.002.
  • Prasanna Kar, G.; Lin, X.; Terentjev, E. M. Fused Filament Fabrication of a Dynamically Crosslinked Network Derived from Commodity Thermoplastics. ACS Appl. Polym. Mater. 2022, 4, 4364–4372. DOI: 10.1021/acsapm.2c00340.
  • Yuan, S.; Shen, F.; Chua, C. K.; Zhou, K. Polymeric Composites for Powder-Based Additive Manufacturing: Materials and Applications. Prog. Polym. Sci. 2019, 91, 141–168. DOI: 10.1016/j.progpolymsci.2018.11.001.
  • Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. DOI: 10.1016/j.compositesb.2018.02.012.
  • Carpenter, C. Additive Manufacturing for the Space Industry. In Additive Manufacturing; CRC Press: Boca Raton, 2019; pp 333–353. DOI: 10.1201/9780429466236-10.
  • Melchels, F. P. W.; Feijen, J.; Grijpma, D. W. A Review on Stereolithography and Its Applications in Biomedical Engineering. Biomater. 2010, 31, 6121–6130. DOI: 10.1016/j.biomaterials.2010.04.050.
  • Cooke, M. N.; Fisher, J. P.; Dean, D.; Rimnac, C.; Mikos, A. G. Use of Stereolithography to Manufacture Critical-Sized 3D Biodegradable Scaffolds for Bone Ingrowth. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 64, 65–69. DOI: 10.1002/jbm.b.10485.
  • Murphy, S. V.; Atala, A. 3D Bioprinting of Tissues and Organs. Nat. Biotech. 2014, 32, 773–785. DOI: 10.1038/nbt.2958.
  • Chen, R. K.; Jin, Y.; Wensman, J.; Shih, A. Additive Manufacturing of Custom Orthoses and Prostheses—A Review. Addit. Manuf. 2016, 12, 77–89. DOI: 10.1016/j.addma.2016.04.002.
  • Truby, R. L.; Lewis, J. A. Printing Soft Matter in Three Dimensions. Nature. 2016, 540, 371–378. DOI: 10.1038/nature21003.
  • Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y.; Wu, G.; Zhou, C. 3D Printing Technologies for Electrochemical Energy Storage. Nano Energy. 2017, 40, 418–431. DOI: 10.1016/j.nanoen.2017.08.037.
  • Lim, S.; Buswell, R. A.; Le, T. T.; Austin, S. A.; Gibb, A. G. F.; Thorpe, T. Developments in Construction-Scale Additive Manufacturing Processes. Autom. Constr. 2012, 21, 262–268. DOI: 10.1016/j.autcon.2011.06.010.
  • Tan, L. J.; Zhu, W.; Zhou, K. Recent Progress on Polymer Materials for Additive Manufacturing. Adv. Funct. Mater. 2020, 30, 2003062. DOI: 10.1002/adfm.202003062.
  • Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. DOI: 10.1021/acs.chemrev.7b00074.
  • Edgar, J.; Tint, S. “Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing”, 2nd Edition. Johnson Matthey Technol. Rev. 2015, 59, 193–198. DOI: 10.1595/205651315X688406.
  • Voet, V. S. D.; Strating, T.; Schnelting, G. H. M.; Dijkstra, P.; Tietema, M.; Xu, J.; Woortman, A. J. J.; Loos, K.; Jager, J.; Folkersma, R. Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing. ACS Omega. 2018, 3, 1403–1408. DOI: 10.1021/acsomega.7b01648.
  • Miao, S.; Zhu, W.; Castro, N. J.; Nowicki, M.; Zhou, X.; Cui, H.; Fisher, J. P.; Zhang, L. G. 4D Printing Smart Biomedical Scaffolds with Novel Soybean Oil Epoxidized Acrylate. Sci. Rep. 2016, 6, 27226. DOI: 10.1038/srep27226.
  • Sutton, J. T.; Rajan, K.; Harper, D. P.; Chmely, S. C. Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography. ACS Appl. Mater. Interf. 2018, 10, 36456–36463. DOI: 10.1021/acsami.8b13031.
  • Bassett, A. W.; Honnig, A. E.; Breyta, C. M.; Dunn, I. C.; La Scala, J. J.; Stanzione, J. F. Vanillin-Based Resin for Additive Manufacturing. ACS Sustainable Chem. Eng. 2020, 8, 5626–5635. DOI: 10.1021/acssuschemeng.0c00159.
  • Wu, B.; Sufi, A.; Ghosh Biswas, R.; Hisatsune, A.; Moxley-Paquette, V.; Ning, P.; Soong, R.; Dicks, A. P.; Simpson, A. J. Direct Conversion of McDonald’s Waste Cooking Oil into a Biodegradable High-Resolution 3D-Printing Resin. ACS Sustainable Chem. Eng. 2020, 8, 1171–1177. DOI: 10.1021/acssuschemeng.9b06281.
  • Zhang, S.; Li, M.; Hao, N.; Ragauskas, A. J. Stereolithography 3D Printing of Lignin-Reinforced Composites with Enhanced Mechanical Properties. ACS Omega. 2019, 4, 20197–20204. DOI: 10.1021/acsomega.9b02455.
  • Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C. K.; Dunn, M. L.; Wang, T.; Jerry Qi, H. Recyclable 3D Printing of Vitrimer Epoxy. Mater. Horiz. 2017, 4, 598–607. DOI: 10.1039/C7MH00043J.
  • Voet, V. S. D.; Guit, J.; Loos, K. Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives. Macromol. Rapid Commun. 2021, 42, 2000475. DOI: 10.1002/marc.202000475.
  • Chakma, P.; Konkolewicz, D. Dynamic Covalent Bonds in Polymeric Materials. Angew Chem. Int. Ed. Engl. 2019, 58, 9682–9695. DOI: 10.1002/anie.201813525.
  • Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Sci. 2011, 334, 965–968. DOI: 10.1126/science.1212648.
  • Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets. J. Am. Chem. Soc. 2012, 134, 7664–7667. DOI: 10.1021/ja302894k.
  • Yu, K.; Taynton, P.; Zhang, W.; Dunn, M. L.; Qi, H. J. Reprocessing and Recycling of Thermosetting Polymers Based on Bond Exchange Reactions. RSC Adv. 2014, 4, 10108–10117. DOI: 10.1039/C3RA47438K.
  • Liu, T.; Hao, C.; Zhang, S.; Yang, X.; Wang, L.; Han, J.; Li, Y.; Xin, J.; Zhang, J. A Self-Healable High Glass Transition Temperature Bioepoxy Material Based on Vitrimer Chemistry. Macromol. 2018, 51, 5577–5585. DOI: 10.1021/acs.macromol.8b01010.
  • Obadia, M. M.; Mudraboyina, B. P.; Serghei, A.; Montarnal, D.; Drockenmuller, E. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C–N Bonds. J. Am. Chem. Soc. 2015, 137, 6078–6083. DOI: 10.1021/jacs.5b02653.
  • Hendriks, B.; Waelkens, J.; Winne, J. M.; Du Prez, F. E. Poly(Thioether) Vitrimers via Transalkylation of Trialkylsulfonium Salts. ACS Macro Lett. 2017, 6, 930–934. DOI: 10.1021/acsmacrolett.7b00494.
  • Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous Urethane Vitrimers. Adv. Funct. Mater. 2015, 25, 2451–2457. DOI: 10.1002/adfm.201404553.
  • Denissen, W.; Droesbeke, M.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Chemical Control of the Viscoelastic Properties of Vinylogous Urethane Vitrimers. Nat. Commun. 2017, 8, 14857. DOI: 10.1038/ncomms14857.
  • Snyder, R. L.; Fortman, D. J.; De Hoe, G. X.; Hillmyer, M. A.; Dichtel, W. R. Reprocessable Acid-Degradable Polycarbonate Vitrimers. Macromol. 2018, 51, 389–397. DOI: 10.1021/acs.macromol.7b02299.
  • Canadell, J.; Goossens, H.; Klumperman, B. Self-Healing Materials Based on Disulfide Links. Macromol. 2011, 44, 2536–2541. DOI: 10.1021/ma2001492.
  • Pepels, M.; Filot, I.; Klumperman, B.; Goossens, H. Self-Healing Systems Based on Disulfide–Thiol Exchange Reactions. Polym. Chem. 2013, 4, 4955. DOI: 10.1039/c3py00087g.
  • Lei, Z. Q.; Xiang, H. P.; Yuan, Y. J.; Rong, M. Z.; Zhang, M. Q. Room-Temperature Self-Healable and Remoldable Cross-Linked Polymer Based on the Dynamic Exchange of Disulfide Bonds. Chem. Mater. 2014, 26, 2038–2046. DOI: 10.1021/cm4040616.
  • Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat- or Water-Driven Malleability in a Highly Recyclable Covalent Network Polymer. Adv. Mater. 2014, 26, 3938–3942. DOI: 10.1002/adma.201400317.
  • Krishnakumar, B.; Sanka, R. V. S. P.; Binder, W. H.; Parthasarthy, V.; Rana, S.; Karak, N. Vitrimers: Associative Dynamic Covalent Adaptive Networks in Thermoset Polymers. Chem. Eng. J. 2020, 385, 123820. DOI: 10.1016/j.cej.2019.123820.
  • Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: Permanent Organic Networks with Glass-like Fluidity. Chem. Sci. 2016, 7, 30–38. DOI: 10.1039/C5SC02223A.
  • Zheng, J.; Png, Z. M.; Ng, S. H.; Tham, G. X.; Ye, E.; Goh, S. S.; Loh, X. J.; Li, Z. Vitrimers: Current Research Trends and Their Emerging Applications. Mater. Today. 2021, 51, 586–625. DOI: 10.1016/j.mattod.2021.07.003.
  • Tibbits, S. 4D Printing: Multi‐Material Shape Change. Archit. Des. 2014, 84, 116–121. DOI: 10.1002/ad.1710.
  • Momeni, F.; Mehdi Hassani. M. N. S.; Liu, X.; Ni, J. A Review of 4D Printing. Mater. Des. 2017, 122, 42–79. DOI: 10.1016/j.matdes.2017.02.068.
  • Ge, Q.; Qi, H. J.; Dunn, M. L. Active Materials by Four-Dimension Printing. Appl. Phys. Lett. 2013, 103, 131901. DOI: 10.1063/1.4819837.
  • Voet, V. S. D. Closed-Loop Additive Manufacturing: Dynamic Covalent Networks in Vat Photopolymerization. ACS Mater. Au. 2023, 3, 18–23. DOI: 10.1021/acsmaterialsau.2c00058.
  • Terryn, S.; Langenbach, J.; Roels, E.; Brancart, J.; Bakkali-Hassani, C.; Poutrel, Q.-A.; Georgopoulou, A.; George Thuruthel, T.; Safaei, A.; Ferrentino, P.; Sebastian, T.; Norvez, S.; Iida, F.; Bosman, A.W.; Tournilhac, F.; Clemens, F.; Assche, G.V.; Vanderborght, B. A Review on Self-Healing Polymers for Soft Robotics. Mater. Today. 2021, 47, 187–205. DOI: 10.1016/j.mattod.2021.01.009.
  • Roels, E.; Terryn, S.; Iida, F.; Bosman, A. W.; Norvez, S.; Clemens, F.; Van Assche, G.; Vanderborght, B.; Brancart, J. Processing of Self‐Healing Polymers for Soft Robotics. Adv. Mater. 2022, 34, 2104798. DOI: 10.1002/adma.202104798.
  • Weisgrab, G.; Ovsianikov, A.; Costa, P. F. Functional 3D Printing for Microfluidic Chips. Adv. Mater. Technol. 2019, 4, 1900275. DOI: 10.1002/admt.201900275.
  • Wemyss, A. M.; Ellingford, C.; Morishita, Y.; Bowen, C.; Wan, C. Dynamic Polymer Networks: A New Avenue towards Sustainable and Advanced Soft Machines. Angew Chem. Int. Ed. Engl. 2021, 60, 13725–13736. DOI: 10.1002/anie.202013254.
  • Valentine, A. D.; Busbee, T. A.; Boley, J. W.; Raney, J. R.; Chortos, A.; Kotikian, A.; Berrigan, J. D.; Durstock, M. F.; Lewis, J. A. Hybrid 3D Printing of Soft Electronics. Adv. Mater. 2017, 29, 1703817. DOI: 10.1002/adma.201703817.
  • Gao, B.; Yang, Q.; Zhao, X.; Jin, G.; Ma, Y.; Xu, F. 4D Bioprinting for Biomedical Applications. Trends Biotechnol. 2016, 34, 746–756. DOI: 10.1016/j.tibtech.2016.03.004.
  • Wang, L. L.; Highley, C. B.; Yeh, Y.; Galarraga, J. H.; Uman, S.; Burdick, J. A. Three‐Dimensional Extrusion Bioprinting of Single‐ and Double‐Network Hydrogels Containing Dynamic Covalent Crosslinks. J. Biomed. Mater. Res. A. 2018, 106, 865–875. DOI: 10.1002/jbm.a.36323.
  • Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D Printing of Polymer Matrix Composites: A Review and Prospective. Compos. B Eng. 2017, 110, 442–458. DOI: 10.1016/j.compositesb.2016.11.034.
  • Xu, W.; Jambhulkar, S.; Zhu, Y.; Ravichandran, D.; Kakarla, M.; Vernon, B.; Lott, D. G.; Cornella, J. L.; Shefi, O.; Miquelard-Garnier, G.; Yang, Y.; Song, K. 3D Printing for Polymer/Particle-Based Processing: A Review. Compos. B Eng. 2021, 223, 109102. DOI: 10.1016/j.compositesb.2021.109102.
  • Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polym. (Basel). 2021, 13, 598. DOI: 10.3390/polym13040598.
  • Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A.; Samulski, E. T.; DeSimone, J. M. Continuous Liquid Interface Production of 3D Objects. Sci. 2015, 347, 1349–1352. DOI: 10.1126/science.aaa2397.
  • Ge, Q.; Li, Z.; Wang, Z.; Kowsari, K.; Zhang, W.; He, X.; Zhou, J.; Fang, N. X. Projection Micro Stereolithography Based 3D Printing and Its Applications. Int. J. Extrem. Manuf. 2020, 2, 022004. DOI: 10.1088/2631-7990/ab8d9a.
  • Sun, C.; Fang, N.; Wu, D. M.; Zhang, X. Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask. Sens. Actuators A Phys. 2005, 121, 113–120. DOI: 10.1016/j.sna.2004.12.011.
  • Designation: F2792 − 12a. DOI: 10.1520/F2792-12A.
  • Gray, R. W.; Baird, D. G.; Helge Bøhn, J. Effects of Processing Conditions on Short TLCP Fiber Reinforced FDM Parts. Rapid Prototyp. J. 1998, 4, 14–25. DOI: 10.1108/13552549810197514.
  • Zhang, Y.; Yin, X.-Y.; Zheng, M.; Moorlag, C.; Yang, J.; Wang, Z. L. 3D Printing of Thermoreversible Polyurethanes with Targeted Shape Memory and Precise in Situ Self-Healing Properties. J. Mater. Chem. A. 2019, 7, 6972–6984. DOI: 10.1039/C8TA12428K.
  • Zhou, Q.; Gardea, F.; Sang, Z.; Lee, S.; Pharr, M.; Sukhishvili, S. A. A Tailorable Family of Elastomeric‐to‐Rigid, 3D Printable, Interbonding Polymer Networks. Adv. Funct. Mater. 2020, 30, 2002374. DOI: 10.1002/adfm.202002374.
  • Skylar-Scott, M. A.; Mueller, J.; Visser, C. W.; Lewis, J. A. Voxelated Soft Matter via Multimaterial Multinozzle 3D Printing. Nature. 2019, 575, 330–335. DOI: 10.1038/s41586-019-1736-8.
  • Kokkinis, D.; Schaffner, M.; Studart, A. R. Multimaterial Magnetically Assisted 3D Printing of Composite Materials. Nat. Commun. 2015, 6, 8643. DOI: 10.1038/ncomms9643.
  • Lewis, J. A. Direct Ink Writing of 3D Functional Materials. Adv. Funct. Mater. 2006, 16, 2193–2204. DOI: 10.1002/adfm.200600434.
  • Li, L.; Lin, Q.; Tang, M.; Duncan, A. J. E.; Ke, C. Advanced Polymer Designs for Direct‐Ink‐Write 3D Printing. Chem. 2019, 25, 10768–10781. DOI: 10.1002/chem.201900975.
  • Principles—Terminology, A. M. ISO/ASTM 52900. International Organization for Standardization; Geneva, Switzerland, 2015.
  • Chatham, C. A.; Long, T. E.; Williams, C. B. A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing. Prog. Polym. Sci. 2019, 93, 68–95. DOI: 10.1016/j.progpolymsci.2019.03.003.
  • Mazzoli, A.; Ferretti, C.; Gigante, A.; Salvolini, E.; Mattioli-Belmonte, M. Selective Laser Sintering Manufacturing of Polycaprolactone Bone Scaffolds for Applications in Bone Tissue Engineering. Rapid Prototyp. J. 2015, 21, 386–392. DOI: 10.1108/RPJ-04-2013-0040.
  • Singh, S.; Ramakrishna, S.; Berto, F. 3D Printing of Polymer Composites: A Short Review. Mat. Design & Process Commun. 2020, 2, e97. DOI: 10.1002/mdp2.97.
  • Zhang, B.; Kowsari, K.; Serjouei, A.; Dunn, M. L.; Ge, Q. Reprocessable Thermosets for Sustainable Three-Dimensional Printing. Nat. Commun. 2018, 9, 1831. DOI: 10.1038/s41467-018-04292-8.
  • Fei, M.; Liu, T.; Zhao, B.; Otero, A.; Chang, Y. C.; Zhang, J. From Glassy Plastic to Ductile Elastomer: Vegetable Oil-Based UV-Curable Vitrimers and Their Potential Use in 3D Printing. ACS Appl. Polym. Mater. 2021, 3, 2470–2479. DOI: 10.1021/acsapm.1c00063.
  • Rossegger, E.; Höller, R.; Reisinger, D.; Strasser, J.; Fleisch, M.; Griesser, T.; Schlögl, S. Digital Light Processing 3D Printing with Thiol–Acrylate Vitrimers. Polym. Chem. 2021, 12, 639–644. DOI: 10.1039/D0PY01520B.
  • Rossegger, E.; Höller, R.; Reisinger, D.; Fleisch, M.; Strasser, J.; Wieser, V.; Griesser, T.; Schlögl, S. High Resolution Additive Manufacturing with Acrylate Based Vitrimers Using Organic Phosphates as Transesterification Catalyst. Polym. (Guildf). 2021, 221, 123631. DOI: 10.1016/j.polymer.2021.123631.
  • Li, H.; Zhang, B.; Wang, R.; Yang, X.; He, X.; Ye, H.; Cheng, J.; Yuan, C.; Zhang, Y.; Ge, Q. Solvent‐Free Upcycling Vitrimers through Digital Light Processing‐Based 3D Printing and Bond Exchange Reaction. Adv. Funct. Mat. 2022, 32, 2111030. DOI: 10.1002/adfm.202111030.
  • Shaukat, U.; Rossegger, E.; Schlögl, S. Thiol–Acrylate Based Vitrimers: From Their Structure–Property Relationship to the Additive Manufacturing of Self-Healable Soft Active Devices. Polym. (Guildf). 2021, 231, 124110. DOI: 10.1016/j.polymer.2021.124110.
  • Shaukat, U.; Sölle, B.; Rossegger, E.; Rana, S.; Schlögl, S. Vat Photopolymerization 3D-Printing of Dynamic Thiol-Acrylate Photopolymers Using Bio-Derived Building Blocks. Polym. (Basel). 2022, 14, 5377. DOI: 10.3390/polym14245377.
  • Gao, H.; Sun, Y.; Wang, M.; Wang, Z.; Han, G.; Jin, L.; Lin, P.; Xia, Y.; Zhang, K. Mechanically Robust and Reprocessable Acrylate Vitrimers with Hydrogen-Bond-Integrated Networks for Photo-3D Printing. ACS Appl. Mater. Interf. 2021, 13, 1581–1591. DOI: 10.1021/acsami.0c19520.
  • Casado, J.; Konuray, O.; Roig, A.; Fernández-Francos, X.; Ramis, X. 3D Printable Hybrid Acrylate-Epoxy Dynamic Networks. Eur. Polym. J. 2022, 173, 111256. DOI: 10.1016/j.eurpolymj.2022.111256.
  • Grauzeliene, S.; Kastanauskas, M.; Talacka, V.; Ostrauskaite, J. Photocurable Glycerol- and Vanillin-Based Resins for the Synthesis of Vitrimers. ACS Appl. Polym. Mater. 2022, 4, 6103–6110. DOI: 10.1021/acsapm.2c00914.
  • Rossegger, E.; Moazzen, K.; Fleisch, M.; Schlögl, S. Locally Controlling Dynamic Exchange Reactions in 3D Printed Thiol-Acrylate Vitrimers Using Dual-Wavelength Digital Light Processing. Polym. Chem. 2021, 12, 3077–3083. DOI: 10.1039/D1PY00427A.
  • Chen, Z.; Yang, M.; Ji, M.; Kuang, X.; Qi, H. J.; Wang, T. Recyclable Thermosetting Polymers for Digital Light Processing 3D Printing. Mater. Des. 2021, 197, 109189. DOI: 10.1016/j.matdes.2020.109189.
  • Choi, S.; Park, B.; Jo, S.; Seo, J. H.; Lee, W.; Kim, D.-G.; Lee, K. B.; Kim, Y. S.; Park, S. Weldable and Reprocessable Shape Memory Epoxy Vitrimer Enabled by Controlled Formulation for Extrusion‐Based 4D Printing Applications. Adv. Eng. Mater. 2022, 24, 2101497. DOI: 10.1002/adem.202101497.
  • Joe, J.; Shin, J.; Choi, Y.; Hwang, J. H.; Kim, S. H.; Han, J.; Park, B.; Lee, W.; Park, S.; Kim, Y. S.; Kim, D.-G. A 4D Printable Shape Memory Vitrimer with Repairability and Recyclability through Network Architecture Tailoring from Commercial Poly (ε‐Caprolactone). Adv. Sci. 2021, 8, 2103682. DOI: 10.1002/advs.202103682.
  • Yu, K.; Xin, A.; Du, H.; Li, Y.; Wang, Q. Additive Manufacturing of Self-Healing Elastomers. NPG Asia Mater. 2019, 11, 7. DOI: 10.1038/s41427-019-0109-y.
  • Wang, S.; Yin, J.; Huang, W.; Ye, J.; Deng, H.; Huang, J.; Wang, S.; Liu, X.; Xiang, H. UV-Induced Disulfide Metathesis: Strengthening Interlayer Adhesion and Rectifying Warped 3D Printed Materials. Addit. Manuf. 2022, 59, 103085. DOI: 10.1016/j.addma.2022.103085.
  • Li, X.; Yu, R.; He, Y.; Zhang, Y.; Yang, X.; Zhao, X.; Huang, W. Self-Healing Polyurethane Elastomers Based on a Disulfide Bond by Digital Light Processing 3D Printing. ACS Macro Lett. 2019, 8, 1511–1516. DOI: 10.1021/acsmacrolett.9b00766.
  • Zheng, M.; Guo, Q.; Yin, X.; Getangama, N. N.; de Bruyn, J. R.; Xiao, J.; Bai, Y.; Liu, M.; Yang, J. Direct Ink Writing of Recyclable and in Situ Repairable Photothermal Polyurethane for Sustainable 3D Printing Development. J. Mater. Chem. A. 2021, 9, 6981–6992. DOI: 10.1039/D0TA11341G.
  • Choi, C.; Okayama, Y.; Morris, P. T.; Robinson, L. L.; Gerst, M.; Speros, J. C.; Hawker, C. J.; Read de Alaniz, J.; Bates, C. M. Digital Light Processing of Dynamic Bottlebrush Materials. Adv. Funct. Mater. 2022, 32, 2200883. DOI: 10.1002/adfm.202200883.
  • Carberry, B. J.; Hergert, J. E.; Yavitt, F. M.; Hernandez, J. J.; Speckl, K. F.; Bowman, C. N.; McLeod, R. R.; Anseth, K. S. 3D Printing of Sacrificial Thioester Elastomers Using Digital Light Processing for Templating 3D Organoid Structures in Soft Biomatrices. Biofabrication. 2021, 13, 044104. DOI: 10.1088/1758-5090/ac1c98.
  • Hernandez, J. J.; Dobson, A. L.; Carberry, B. J.; Kuenstler, A. S.; Shah, P. K.; Anseth, K. S.; White, T. J.; Bowman, C. N. Controlled Degradation of Cast and 3-D Printed Photocurable Thioester Networks via Thiol–Thioester Exchange. Macromolecules. 2022, 55, 1376–1385. DOI: 10.1021/acs.macromol.1c02459.
  • Saed, M. O.; Lin, X.; Terentjev, E. M. Dynamic Semicrystalline Networks of Polypropylene with Thiol-Anhydride Exchangeable Crosslinks. ACS Appl. Mater. Interf. 2021, 13, 42044–42051. DOI: 10.1021/acsami.1c12099.
  • Davidson, E. C.; Kotikian, A.; Li, S.; Aizenberg, J.; Lewis, J. A. 3D Printable and Reconfigurable Liquid Crystal Elastomers with Light‐Induced Shape Memory via Dynamic Bond Exchange. Adv. Mater. 2020, 32, 1905682. DOI: 10.1002/adma.201905682.
  • Podgórski, M.; Huang, S.; Bowman, C. N. Additive Manufacture of Dynamic Thiol–Ene Networks Incorporating Anhydride-Derived Reversible Thioester Links. ACS Appl. Mater. Interf. 2021, 13, 12789–12796. DOI: 10.1021/acsami.0c18979.
  • Robinson, L. L.; Self, J. L.; Fusi, A. D.; Bates, M. W.; Read de Alaniz, J.; Hawker, C. J.; Bates, C. M.; Sample, C. S. Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters. ACS Macro. Lett. 2021, 10, 857–863. DOI: 10.1021/acsmacrolett.1c00257.
  • Amaral, A. J. R.; Gaspar, V. M.; Lavrador, P.; Mano, J. F. Double Network Laminarin-Boronic/Alginate Dynamic Bioink for 3D Bioprinting Cell-Laden Constructs. Biofabrication. 2021, 13, 035045. DOI: 10.1088/1758-5090/abfd79.
  • Niu, W.; Zhang, Z.; Chen, Q.; Cao, P.-F.; Advincula, R. C. Highly Recyclable, Mechanically Isotropic and Healable 3D-Printed Elastomers via Polyurea Vitrimers. ACS Mater. Lett. 2021, 3, 1095–1103. DOI: 10.1021/acsmaterialslett.1c00132.
  • Sun, S.; Fei, G.; Wang, X.; Xie, M.; Guo, Q.; Fu, D.; Wang, Z.; Wang, H.; Luo, G.; Xia, H. Covalent Adaptable Networks of Polydimethylsiloxane Elastomer for Selective Laser Sintering 3D Printing. Chem. Eng. J. 2021, 412, 128675. DOI: 10.1016/j.cej.2021.128675.
  • Wang, J.; Sun, S.; Li, X.; Fei, G.; Wang, Z.; Xia, H. Selective Laser Sintering of Polydimethylsiloxane Composites. 3D Print Addit. Manuf. 2021. DOI: 10.1089/3dp.2021.0105.
  • Fang, Z.; Song, H.; Zhang, Y.; Jin, B.; Wu, J.; Zhao, Q.; Xie, T. Modular 4D Printing via Interfacial Welding of Digital Light-Controllable Dynamic Covalent Polymer Networks. Matter. 2020, 2, 1187–1197. DOI: 10.1016/j.matt.2020.01.014.
  • Zhu, G.; Zhang, J.; Huang, J.; Qiu, Y.; Liu, M.; Yu, J.; Liu, C.; Shang, Q.; Hu, Y.; Hu, L.; Zhou, Y. Recyclable and Reprintable Biobased Photopolymers for Digital Light Processing 3D Printing. Chem. Eng. J. 2023, 452, 139401. DOI: 10.1016/j.cej.2022.139401.
  • He, X.; Lin, Y.; Ding, Y.; Abdullah, A. M.; Lei, Z.; Han, Y.; Shi, X.; Zhang, W.; Yu, K. Reshapeable, Rehealable and Recyclable Sensor Fabricated by Direct Ink Writing of Conductive Composites Based on Covalent Adaptable Network Polymers. Int. J. Extrem. Manuf. 2022, 4, 015301. DOI: 10.1088/2631-7990/ac37f2.
  • Kim, S.; Rahman, M. A.; Arifuzzaman, M.; Gilmer, D. B.; Li, B.; Wilt, J. K.; Lara-Curzio, E.; Saito, T. Closed-Loop Additive Manufacturing of Upcycled Commodity Plastic through Dynamic Cross-Linking. Sci. Adv. 2022, 8, 6006. DOI: 10.1126/sciadv.abn6006.
  • He, X.; Lei, Z.; Zhang, W.; Yu, K. Recyclable 3D Printing of Polyimine-Based Covalent Adaptable Network Polymers. 3D Print Addit. Manuf. 2019, 6, 31–39. DOI: 10.1089/3dp.2018.0115.
  • Miao, J.-T.; Ge, M.; Peng, S.; Zhong, J.; Li, Y.; Weng, Z.; Wu, L.; Zheng, L. Dynamic Imine Bond-Based Shape Memory Polymers with Permanent Shape Reconfigurability for 4D Printing. ACS Appl. Mater. Interf. 2019, 11, 40642–40651. DOI: 10.1021/acsami.9b14145.
  • Liguori, A.; Subramaniyan, S.; Yao, J. G.; Hakkarainen, M. Photocurable Extended Vanillin-Based Resin for Mechanically and Chemically Recyclable, Self-Healable and Digital Light Processing 3D Printable Thermosets. Eur. Polym. J. 2022, 178, 111489. DOI: 10.1016/j.eurpolymj.2022.111489.
  • Cortés-Guzmán, K. P.; Parikh, A. R.; Sparacin, M. L.; Remy, A. K.; Adegoke, L.; Chitrakar, C.; Ecker, M.; Voit, W.; E.; Smaldone,.; R.; A. Recyclable, Biobased Photoresins for 3D Printing through Dynamic Imine Exchange. ACS Sustain. Chem. Eng. 2022, 10, 13091–13099. DOI: 10.1021/acssuschemeng.2c03541.
  • Sun, S.; Gan, X.; Wang, Z.; Fu, D.; Pu, W.; Xia, H. Dynamic Healable Polyurethane for Selective Laser Sintering. Addit. Manuf. 2020, 33, 101176. DOI: 10.1016/j.addma.2020.101176.
  • Hamachi, L. S.; Rau, D. A.; Arrington, C. B.; Sheppard, D. T.; Fortman, D. J.; Long, T. E.; Williams, C. B.; Dichtel, W. R. Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Appl. Mater. Interf. 2021, 13, 38680–38687. DOI: 10.1021/acsami.1c09373.
  • Ouyang, H.; Li, X.; Lu, X.; Xia, H. Selective Laser Sintering 4D Printing of Dynamic Cross-Linked Polyurethane Containing Diels–Alder Bonds. ACS Appl. Polym. Mater. 2022, 4, 4035–4046. DOI: 10.1021/acsapm.2c00565.
  • Yuan, T.; Zhang, L.; Li, T.; Tu, R.; Sodano, H. A. 3D Printing of a Self-Healing, High Strength, and Reprocessable Thermoset. Polym. Chem. 2020, 11, 6441–6452. DOI: 10.1039/D0PY00819B.
  • Durand-Silva, A.; Cortés-Guzmán, K. P.; Johnson, R. M.; Perera, S. D.; Diwakara, S. D.; Smaldone, R. A. Balancing Self-Healing and Shape Stability in Dynamic Covalent Photoresins for Stereolithography 3D Printing. ACS Macro. Lett. 2021, 10, 486–491. DOI: 10.1021/acsmacrolett.1c00121.
  • Cerdan, K.; Brancart, J.; De Coninck, H.; Van Hooreweder, B.; Van Assche, G.; Van Puyvelde, P. Laser Sintering of Self-Healable and Recyclable Thermoset Networks. Eur. Polym. J. 2022, 175, 111383. DOI: 10.1016/j.eurpolymj.2022.111383.
  • Mihajlovic, M.; Rikkers, M.; Mihajlovic, M.; Viola, M.; Schuiringa, G.; Ilochonwu, B. C.; Masereeuw, R.; Vonk, L.; Malda, J.; Ito, K.; Vermonden, T. Viscoelastic Chondroitin Sulfate and Hyaluronic Acid Double-Network Hydrogels with Reversible Cross-Links. Biomacromolecules. 2022, 23, 1350–1365. DOI: 10.1021/acs.biomac.1c01583.
  • Peng, B.; Yang, Y.; Ju, T.; Cavicchi, K. A. Fused Filament Fabrication 4D Printing of a Highly Extensible, Self-Healing, Shape Memory Elastomer Based on Thermoplastic Polymer Blends. ACS Appl. Mater. Interf. 2021, 13, 12777–12788. DOI: 10.1021/acsami.0c18618.
  • Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. DOI: 10.1002/adma.201707035.
  • Wang, Z.; Torigoe, Y.; Hirai, S. A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling. IEEE Robot. Autom. Lett. 2017, 2, 1909–1916. DOI: 10.1109/LRA.2017.2714141.
  • Zhu, J.; Lyu, L.; Xu, Y.; Liang, H.; Zhang, X.; Ding, H.; Wu, Z. Intelligent Soft Surgical Robots for Next‐Generation Minimally Invasive Surgery. Adv. Int. Sys. 2021, 3, 2100011. DOI: 10.1002/aisy.202100011.
  • Cheng, N.; Amend, J.; Farrell, T.; Latour, D.; Martinez, C.; Johansson, J.; McNicoll, A.; Wartenberg, M.; Naseef, S.; Hanson, W.; Culley, W. Prosthetic Jamming Terminal Device: A Case Study of Untethered Soft Robotics. Soft Robot. 2016, 3, 205–212. DOI: 10.1089/soro.2016.0017.
  • Rus, D.; Tolley, M. T. Design, Fabrication and Control of Soft Robots. Nature. 2015, 521, 467–475. DOI: 10.1038/nature14543.
  • Terryn, S.; Brancart, J.; Lefeber, D.; Van Assche, G.; Vanderborght, B. Self-Healing Soft Pneumatic Robots. Sci. Robot. 2017, 2, 16. DOI: 10.1126/scirobotics.aan4268.
  • Tan, Y. J.; Susanto, G. J.; Anwar Ali, H. P.; Tee, B. C. K. Progress and Roadmap for Intelligent Self‐Healing Materials in Autonomous Robotics. Adv. Mater. 2021, 33, 2002800. DOI: 10.1002/adma.202002800.
  • Tang, D.; Zhang, L.; Zhang, X.; Xu, L.; Li, K.; Zhang, A. Bio-Mimetic Actuators of a Photothermal-Responsive Vitrimer Liquid Crystal Elastomer with Robust, Self-Healing, Shape Memory, and Reconfigurable Properties. ACS Appl. Mater. Interf. 2022, 14, 1929–1939. DOI: 10.1021/acsami.1c19595.
  • Zhang, B.; Zhang, W.; Zhang, Z.; Zhang, Y.-F.; Hingorani, H.; Liu, Z.; Liu, J.; Ge, Q. Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System. ACS Appl. Mater. Interf. 2019, 11, 10328–10336. DOI: 10.1021/acsami.9b00359.
  • Roels, E.; Terryn, S.; Brancart, J.; Verhelle, R.; Van Assche, G.; Vanderborght, B. Additive Manufacturing for Self-Healing Soft Robots. Soft Robot. 2020, 7, 711–723. DOI: 10.1089/soro.2019.0081.
  • Zhang, Q.; Weng, S.; Zhao, Z.; Qi, H. J.; Fang, D. Soft Pneumatic Actuators by Digital Light Processing Combined with Injection-Assisted Post-Curing. Appl. Math. Mech.-Engl. Ed. 2021, 42, 159–172. DOI: 10.1007/s10483-021-2705-7.
  • Tamay, D. G.; Dursun Usal, T.; Alagoz, A. S.; Yucel, D.; Hasirci, N.; Hasirci, V. 3D and 4D Printing of Polymers for Tissue Engineering Applications. Front Bioeng. Biotechnol. 2019, 7, 164. DOI: 10.3389/fbioe.2019.00164.
  • Norman, J.; Madurawe, R. D.; Moore, C. M. V.; Khan, M. A.; Khairuzzaman, A. A New Chapter in Pharmaceutical Manufacturing: 3D-Printed Drug Products. Adv. Drug Deliv. Rev. 2017, 108, 39–50. DOI: 10.1016/j.addr.2016.03.001.
  • Ackland, D. C.; Robinson, D.; Redhead, M.; Lee, P. V. S.; Moskaljuk, A.; Dimitroulis, G. A Personalized 3D-Printed Prosthetic Joint Replacement for the Human Temporomandibular Joint: From Implant Design to Implantation. J. Mech. Behav. Biomed. Mater. 2017, 69, 404–411. DOI: 10.1016/j.jmbbm.2017.01.048.
  • Oishi, M.; Fukuda, M.; Yajima, N.; Yoshida, K.; Takahashi, M.; Hiraishi, T.; Takao, T.; Saito, A.; Fujii, Y. Interactive Presurgical Simulation Applying Advanced 3D Imaging and Modeling Techniques for Skull Base and Deep Tumors. J. Neurosurg. 2013, 119, 94–105. DOI: 10.3171/2013.3.JNS121109.
  • de Smedt, K.; Gelaude, F.; Clijmans, T. Surgical Guiding Tool, Methods for Manufacture and Uses Thereof. Google Patents. 2013, 9.
  • Shi, W.; Hass, B.; Kuss, M. A.; Zhang, H.; Ryu, S.; Zhang, D.; Li, T.; Li, Y.; Duan, B. Fabrication of Versatile Dynamic Hyaluronic Acid-Based Hydrogels. Carbohydr. Polym. 2020, 233, 115803. DOI: 10.1016/j.carbpol.2019.115803.
  • Ma, M.; Yang, J.; Ye, Z.; Dong, A.; Zhang, J.; Zhang, J. A Facile Strategy for Synergistic Integration of Dynamic Covalent Bonds and Hydrogen Bonds to Surmount the Tradeoff between Mechanical Property and Self‐Healing Capacity of Hydrogels. Macromol. Mater. Eng. 2021, 306, 2000577. DOI: 10.1002/mame.202000577.
  • Sigen, A.; Lyu, J.; Johnson, M.; Creagh-Flynn, J.; Zhou, D.; Lara-Sáez, I.; Xu, Q.; Tai, H.; Wang, W. Instant Gelation System as Self-Healable and Printable 3D Cell Culture Bioink Based on Dynamic Covalent Chemistry. ACS Appl. Mater. Interf. 2020, 12, 38918–38924. DOI: 10.1021/acsami.0c08567.
  • Liu, C.; Huang, N.; Xu, F.; Tong, J.; Chen, Z.; Gui, X.; Fu, Y.; Lao, C. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polym. (Basel). 2018, 10, 629. DOI: 10.3390/polym10060629.
  • Zou, Z.; Zhu, C.; Li, Y.; Lei, X.; Zhang, W.; Xiao, J. Rehealable, Fully Recyclable, and Malleable Electronic Skin Enabled by Dynamic Covalent Thermoset Nanocomposite. Sci. Adv. 2018, 4, eaaq0508. DOI: 10.1126/sciadv.aaq0508.
  • Guo, Y.; Chen, S.; Sun, L.; Yang, L.; Zhang, L.; Lou, J.; You, Z. Degradable and Fully Recyclable Dynamic Thermoset Elastomer for 3D‐Printed Wearable Electronics. Adv. Funct. Mater. 2021, 31, 2009799. DOI: 10.1002/adfm.202009799.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.