1,075
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

How Are Natural-Based Polymers Shaping the Future of Cancer Immunotherapy—A Review

, &
Pages 371-406 | Received 09 Feb 2023, Accepted 03 Jul 2023, Published online: 03 Aug 2023

References

  • Xiao, Y.; Yu, D. Tumor Microenvironment as a Therapeutic Target in Cancer. Pharmacol. Ther. 2021, 221, 107753. DOI: 10.1016/j.pharmthera.2020.107753.
  • Tiwari, A.; Trivedi, R.; Lin, S.-Y. Tumor Microenvironment: Barrier or Opportunity towards Effective Cancer Therapy. J. Biomed. Sci. 2022, 29, 83. DOI: 10.1186/s12929-022-00866-3.
  • Dzobo, K.; Senthebane, D. A.; Dandara, C. The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers 2023, 15, 376. DOI: 10.3390/cancers15020376.
  • Wherry, E. J. T Cell Exhaustion. Nat. Immunol. 2011, 12, 492–499. DOI: 10.1038/ni.2035.
  • DeVito, N. C.; Plebanek, M. P.; Theivanthiran, B.; Hanks, B. A. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Front. Immunol. 2019, 10, 2876. DOI: 10.3389/fimmu.2019.02876.
  • Leach, D. R.; Krummel, M. F.; Allison, J. P. Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science 1996, 271, 1734–1736. DOI: 10.1126/science.271.5256.1734.
  • Reddy, M. S.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K. K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. DOI: 10.3390/polym13071105.
  • Deng, G.; Wong, W.-T.; Huang, M.; Wu, R.; Lai, W.-F. Chapter 8 – Self-Healing Properties of Hydrogels Based on Natural Polymers. In Hydrogels Based on Natural Polymers; Chen, Y. B. T.-H. B. on N. P., Ed.; Elsevier: Netherlands, 2020; pp 223–245. DOI: 10.1016/B978-0-12-816421-1.00008-2.
  • Razavi, S. M. R.; Oh, J.; Sett, S.; Feng, L.; Yan, X.; Hoque, M. J.; Liu, A.; Haasch, R. T.; Masoomi, M.; Bagheri, R.; et al. Superhydrophobic Surfaces Made from Naturally Derived Hydrophobic Materials. ACS Sustain. Chem. Eng. 2017, 5, 11362–11370. DOI: 10.1021/acssuschemeng.7b02424.
  • Ghalia, M. A.; Abdelrasoul, A.; 7 – Compressive and Fracture Toughness of Natural and Synthetic Fiber-Reinforced Polymer. In Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing Series in Composites Science and Engineering; Jawaid, M., Thariq, M., Saba, N. B. T.-M. and P. T. of B., Eds.; Woodhead Publishing: United Kingdom, 2019; pp 123–140. DOI: 10.1016/B978-0-08-102292-4.00007-2.
  • Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S.; V; Papneja, N.; Miller, W. H. A. Review of Cancer Immunotherapy: From the Past, to the Present, to the Future. Curr. Oncol. 2020, 27, 87–97. DOI: 10.3747/co.27.5223.
  • Kimiz-Gebologlu, I.; Gulce-Iz, S.; Biray-Avci, C. Monoclonal Antibodies in Cancer Immunotherapy. Mol. Biol. Rep. 2018, 45, 2935–2940. DOI: 10.1007/s11033-018-4427-x.
  • Berraondo, P.; Sanmamed, M. F.; Ochoa, M. C.; Etxeberria, I.; Aznar, M. A.; Pérez-Gracia, J. L.; Rodríguez-Ruiz, M. E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in Clinical Cancer Immunotherapy. Br. J. Cancer 2019, 120, 6–15. DOI: 10.1038/s41416-018-0328-y.
  • Guermonprez, P.; Valladeau, J.; Zitvogel, L.; Théry, C.; Amigorena, S. Antigen Presentation and T Cell Stimulation by Dendritic Cells. Annu. Rev. Immunol. 2002, 20, 621–667. DOI: 10.1146/annurev.immunol.20.100301.064828.
  • Restifo, N. P.; Dudley, M. E.; Rosenberg, S. A. Adoptive Immunotherapy for Cancer: Harnessing the T Cell Response. Nat. Rev. Immunol. 2012, 12, 269–281. DOI: 10.1038/nri3191.
  • Brenner, M. K.; Heslop, H. E. Adoptive T Cell Therapy of Cancer. Curr. Opin. Immunol. 2010, 22, 251–257. DOI: 10.1016/J.COI.2010.01.020.
  • Geethakumari, P. R.; Ramasamy, D. P.; Dholaria, B.; Berdeja, J.; Kansagra, A. Balancing Quality, Cost, and Access During Delivery of Newer Cellular and Immunotherapy Treatments. Curr. Hematol. Malig. Rep. 2021, 16, 345–356. DOI: 10.1007/s11899-021-00635-3.
  • Gomes-Silva, D.; Ramos, C. A. Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line. Biotechnol. J. 2018, 13, 1700097. DOI: 10.1002/biot.201700097.
  • Sprent, J.; Surh, C. D. Normal T Cell Homeostasis: The Conversion of Naive Cells into Memory-Phenotype Cells. Nat. Immunol. 2011, 12, 478–484. DOI: 10.1038/ni.2018.
  • Zhang, N.; Bevan, M. J. CD8+ T Cells: Foot Soldiers of the Immune System. Immunity 2011, 35, 161–168. DOI: 10.1016/j.immuni.2011.07.010.
  • Takada, K.; Jameson, S. C. Naive T Cell Homeostasis: From Awareness of Space to a Sense of Place. Nat. Rev. Immunol. 2009, 9, 823–832. DOI: 10.1038/nri2657.
  • Ma, A.; Koka, R.; Burkett, P. Diverse Functions OF Il-2, Il-15, and Il-7 IN Lymphoid Homeostasis. Annu. Rev. Immunol. 2006, 24, 657–679. DOI: 10.1146/annurev.immunol.24.021605.090727.
  • Malek, T. R. The Biology of Interleukin-2. Annu. Rev. Immunol. 2008, 26, 453–479. DOI: 10.1146/annurev.immunol.26.021607.090357.
  • Spolski, R.; Leonard, W. J. Interleukin-21: Basic Biology and Implications for Cancer and Autoimmunity. Annu. Rev. Immunol. 2008, 26, 57–79. DOI: 10.1146/annurev.immunol.26.021607.090316.
  • Mescher, M. F.; Curtsinger, J. M.; Agarwal, P.; Casey, K. A.; Gerner, M.; Hammerbeck, C. D.; Popescu, F.; Xiao, Z. Signals Required for Programming Effector and Memory Development by CD8+ T Cells. Immunol. Rev. 2006, 211, 81–92. DOI: 10.1111/j.0105-2896.2006.00382.x.
  • Arakaki, R.; Yamada, A.; Kudo, Y.; Hayashi, Y.; Ishimaru, N. Mechanism of Activation-Induced Cell Death of T Cells and Regulation of FasL Expression. Crit. Rev. Immunol. 2014, 34, 301–314. DOI: 10.1615/critrevimmunol.2014009988.
  • Green, D. R.; Droin, N.; Pinkoski, M. Activation-Induced Cell Death in T Cells. Immunol. Rev. 2003, 193, 70–81. DOI: 10.1034/j.1600-065X.2003.00051.x.
  • Klein, E.; Ben-Bassat, H.; Neumann, H.; Ralph, P.; Zeuthen, J.; Polliack, A.; Vánky, F. Properties of the K562 Cell Line, Derived from a Patient with Chronic Myeloid Leukemia. Int. J. Cancer 1976, 18, 421–431. DOI: 10.1002/ijc.2910180405.
  • Butler, M. O.; Lee, J.-S.; Ansen, S.; Neuberg, D.; Hodi, F. S.; Murray, A. P.; Drury, L.; Berezovskaya, A.; Mulligan, R. C.; Nadler, L. M.; et al. Long-Lived Antitumor CD8+ Lymphocytes for Adoptive Therapy Generated Using an Artificial Antigen-Presenting Cell. Clin. Cancer Res. 2007, 13, 1857–1867. DOI: 10.1158/1078-0432.CCR-06-1905.
  • Paczesny, S.; Banchereau, J.; Wittkowski, K. M.; Saracino, G.; Fay, J.; Palucka, A. K. Expansion of Melanoma-Specific Cytolytic CD8+ T Cell Precursors in Patients with Metastatic Melanoma Vaccinated with CD34+ Progenitor-Derived Dendritic Cells. J. Exp. Med. 2004, 199, 1503–1511. DOI: 10.1084/jem.20032118.
  • Almand, B.; Resser, J. R.; Lindman, B.; Nadaf, S.; Clark, J. I.; Kwon, E. D.; Carbone, D. P.; Gabrilovich, D. I. Clinical Significance of Defective Dendritic Cell Differentiation in Cancer. Clin. Cancer Res. 2000, 6, 1755–1766.
  • Gross, G.; Eshhar, Z. Endowing T Cells with Antibody Specificity Using Chimeric T Cell Receptors. FASEB J. 1992, 6, 3370–3378. DOI: 10.1096/fasebj.6.15.1464371.
  • D’Aloia, M. M.; Zizzari, I. G.; Sacchetti, B.; Pierelli, L.; Alimandi, M. CAR-T Cells: The Long and Winding Road to Solid Tumors. Cell Death Dis. 2018, 9, 282. DOI: 10.1038/s41419-018-0278-6.
  • Moon, J. J.; Huang, B.; Irvine, D. J. Engineering Nano- and Microparticles to Tune Immunity. Adv. Mater. 2012, 24, 3724–3746. DOI: 10.1002/adma.201200446.
  • Schmid, D.; Park, C. G.; Hartl, C. A.; Subedi, N.; Cartwright, A. N.; Puerto, R. B.; Zheng, Y.; Maiarana, J.; Freeman, G. J.; Wucherpfennig, K. W.; et al. T Cell-Targeting Nanoparticles Focus Delivery of Immunotherapy to Improve Antitumor Immunity. Nat. Commun. 2017, 8, 1747. DOI: 10.1038/s41467-017-01830-8.
  • Steenblock, E. R.; Fahmy, T. M. A Comprehensive Platform for Ex Vivo T-Cell Expansion Based on Biodegradable Polymeric Artificial Antigen-Presenting Cells. Mol. Ther. 2008, 16, 765–772. DOI: 10.1038/mt.2008.11.
  • Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials 2020, 10, 1403. DOI: 10.3390/nano10071403.
  • Perica, K.; De León Medero, A.; Durai, M.; Chiu, Y. L.; Bieler, J. G.; Sibener, L.; Niemöller, M.; Assenmacher, M.; Richter, A.; Edidin, M.; et al. Nanoscale Artificial Antigen Presenting Cells for T Cell Immunotherapy. Nanomedicine 2014, 10, 119–129. DOI: 10.1016/j.nano.2013.06.015.
  • Meyer, R. A.; Sunshine, J. C.; Perica, K.; Kosmides, A. K.; Aje, K.; Schneck, J. P.; Green, J. J. Biodegradable Nanoellipsoidal Artificial Antigen Presenting Cells for Antigen Specific T-Cell Activation. Small 2015, 11, 1519–1525. DOI: 10.1002/smll.201402369.
  • Kumar, S.; Anselmo, A. C.; Banerjee, A.; Zakrewsky, M.; Mitragotri, S. Shape and Size-Dependent Immune Response to Antigen-Carrying Nanoparticles. J. Control Release 2015, 220, 141–148. DOI: 10.1016/J.JCONREL.2015.09.069.
  • Sunshine, J. C.; Perica, K.; Schneck, J. P.; Green, J. J. Particle Shape Dependence of CD8+ T Cell Activation by Artificial Antigen Presenting Cells. Biomaterials 2014, 35, 269–277. DOI: 10.1016/J.BIOMATERIALS.2013.09.050.
  • Glenny, A. T.; Pope, C. G.; Waddington, H.; Wallace, U. Immunological Notes. XVII–XXIV. J. Pathol. 1926, 29, 31–40. DOI: 10.1002/path.1700290106.
  • Sokolovska, A.; Hem, S. L.; HogenEsch, H. Activation of Dendritic Cells and Induction of CD4+ T Cell Differentiation by Aluminum-Containing Adjuvants. Vaccine 2007, 25, 4575–4585. DOI: 10.1016/j.vaccine.2007.03.045.
  • Desbien, A. L.; Reed, S. J.; Bailor, H. R.; Cauwelaert, N. D.; Laurance, J. D.; Orr, M. T.; Fox, C. B.; Carter, D.; Reed, S. G.; Duthie, M. S. Squalene Emulsion Potentiates the Adjuvant Activity of the TLR4 Agonist, GLA, via Inflammatory Caspases, IL‐18, and IFN‐γ. Eur. J. Immunol. 2015, 45, 407–417. DOI: 10.1002/eji.201444543.
  • Ismaili, J.; Rennesson, J.; Aksoy, E.; Vekemans, J.; Vincart, B.; Amraoui, Z.; Van Laethem, F.; Goldman, M.; Dubois, P. M. Monophosphoryl Lipid A Activates Both Human Dendritic Cells and T Cells. J. Immunol. 2002, 168, 926–932. DOI: 10.4049/jimmunol.168.2.926.
  • Chu, R. S.; Targoni, O. S.; Krieg, A. M.; Lehmann, P. V.; Harding, C. V. CpG Oligodeoxynucleotides Act as Adjuvants That Switch on T Helper 1 (Th1) Immunity. J. Exp. Med. 1997, 186, 1623–1631. DOI: 10.1084/jem.186.10.1623.
  • Hanahan, D.; Weinberg, R. A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. DOI: 10.1016/j.cell.2011.02.013.
  • Dunn, G. P.; Bruce, A. T.; Ikeda, H.; Old, L. J.; Schreiber, R. D. Cancer Immunoediting: From Immunosurveillance to Tumor Escape. Nat. Immunol. 2002, 3, 991–998. DOI: 10.1038/ni1102-991.
  • Curran, M. A.; Montalvo, W.; Yagita, H.; Allison, J. P. PD-1 and CTLA-4 Combination Blockade Expands Infiltrating T Cells and Reduces Regulatory T and Myeloid Cells within B16 Melanoma Tumors. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 4275–4280. DOI: 10.1073/pnas.0915174107.
  • Rajabi, M.; Mousa, S. A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. DOI: 10.3390/biomedicines5020034.
  • Ferrara, N. Vascular Endothelial Growth Factor as a Target for Anticancer Therapy. Oncologist 2004, 9 Suppl 1, 2–10. DOI: 10.1634/theoncologist.9-suppl_1-2.
  • Pugh, C. W.; Ratcliffe, P. J. Regulation of Angiogenesis by Hypoxia: Role of the HIF System. Nat. Med. 2003, 9, 677–684. DOI: 10.1038/nm0603-677.
  • Diaz-Gonzalez, J. A.; Russell, J.; Rouzaut, A.; Gil-Bazo, I.; Montuenga, L. Targeting Hypoxia and Angiogenesis through HIF-1alpha Inhibition. Cancer Biol. Ther. 2005, 4, 1055–1062. DOI: 10.4161/cbt.4.10.2195.
  • Zhong, H.; Chiles, K.; Feldser, D.; Laughner, E.; Hanrahan, C.; Georgescu, M.-M.; Simons, J. W.; Semenza, G. L. Modulation of Hypoxia-Inducible Factor 1α Expression by the Epidermal Growth Factor/Phosphatidylinositol 3-Kinase/PTEN/AKT/FRAP Pathway in Human Prostate Cancer Cells: Implications for Tumor Angiogenesis and Therapeutics. Cancer Res. 2000, 60, 1541–1545.
  • Ferrara, N.; Hillan, K. J.; Novotny, W. Bevacizumab (Avastin), a Humanized Anti-VEGF Monoclonal Antibody for Cancer Therapy. Biochem. Biophys. Res. Commun. 2005, 333, 328–335. DOI: 10.1016/j.bbrc.2005.05.132.
  • Ebewele, R. O. Polymer Science and Technology; CRC Press: Boca Raton, FL, 2000. DOI: 10.1016/0261-3069(95)90127-2.
  • Kamatar, A.; Gunay, G.; Acar, H. Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids. Polymers 2020, 12, 2506. DOI: 10.3390/polym12112506.
  • Negut, I.; Dorcioman, G.; Grumezescu, V. Scaffolds for Wound Healing Applications. Polymers 2020, 12, 2010. DOI: 10.3390/polym12092010.
  • Fan, D.; Staufer, U.; Accardo, A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering 2019, 6, 113. DOI: 10.3390/bioengineering6040113.
  • Abbasian, M.; Massoumi, B.; Mohammad-Rezaei, R.; Samadian, H.; Jaymand, M. Scaffolding Polymeric Biomaterials: Are Naturally Occurring Biological Macromolecules More Appropriate for Tissue Engineering? Int. J. Biol. Macromol. 2019, 134, 673–694. DOI: 10.1016/j.ijbiomac.2019.04.197.
  • Koide, S. S. Chitin-Chitosan: Properties, Benefits and Risks. Nutr. Res. 1998, 18, 1091–1101. DOI: 10.1016/S0271-5317(98)00091-8.
  • Kafetzopoulos, D.; Martinou, A.; Bouriotis, V. Bioconversion of Chitin to Chitosan: Purification and Characterization of Chitin Deacetylase from Mucor rouxii. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 2564–2568. DOI: 10.1073/pnas.90.7.2564.
  • Hirano, S.; Zhang, M.; Chung, B. G.; Kim, S. K. The N-Acylation of Chitosan Fibre and the N-Deacetylation of Chitin Fibre and Chitin–Cellulose Blended Fibre at a Solid State. Carbohydr. Polym. 2000, 41, 175–179. DOI: 10.1016/S0144-8617(99)00081-8.
  • Colvin, J. R. The Biosynthesis of Cellulose. In Carbohydrates: Structure and Function; Elsevier: Netherlands, 1980; pp 543–570.
  • Cannon, R. E.; Anderson, S. M. Biogenesis of Bacterial Cellulose. Crit. Rev. Microbiol. 1991, 17, 435–447. DOI: 10.3109/10408419109115207.
  • Marchessault, R. H.; Sundararajan, P. R. 2 – Cellulose. In The Polysaccharides, Aspinall, G. O. B. T.-T. P., Ed.; Academic Press: Cambridge, MA, 1983; pp 11–95. DOI: 10.1016/B978-0-12-065602-8.50007-8.
  • Fujino, T.; Itoh, T. Architecture of the Cell Wall of a Green Alga, Oocystis apiculata. Protoplasma 1994, 180, 39–48. DOI: 10.1007/BF01379222.
  • Smidsrød, O.; Skja, G. Alginate as Immobilization Matrix for Cells. Trends Biotechnol. 1990, 8, 71–78.
  • Haug, A.; Larsen, B.; Smidsrød, O.; Smidsrød, O.; Eriksson, G.; Blinc, R.; Paušak, S.; Ehrenberg, L.; Dumanović, J. Studies on the Sequence of Uronic Acid Residues in Alginic Acid. Acta Chem. Scand. 1967, 21, 691–704. DOI: 10.3891/acta.chem.scand.21-0691.
  • Gombotz, W. R.; Wee, S. Protein Release from Alginate Matrices. Adv. Drug Deliv. Rev. 1998, 31, 267–285. DOI: 10.1016/s0169-409x(97)00124-5.
  • Rowley, J. A.; Madlambayan, G.; Mooney, D. J. Alginate Hydrogels as Synthetic Extracellular Matrix Materials. Biomaterials 1999, 20, 45–53. DOI: 10.1016/s0142-9612(98)00107-0.
  • Fraser, J. R. E.; Laurent, T. C.; Laurent, U. B. G. Hyaluronan: Its Nature, Distribution, Functions and Turnover. J. Intern. Med. 1997, 242, 27–33. DOI: 10.1046/j.1365-2796.1997.00170.x.
  • Price, R. D.; Berry, M. G.; Navsaria, H. A. Hyaluronic Acid: The Scientific and Clinical Evidence. J. Plast. Reconstr. Aesthet. Surg. 2007, 60, 1110–1119. DOI: 10.1016/j.bjps.2007.03.005.
  • Ambrosio, L.; Borzacchiello, A.; Netti, P. A.; Nicolais, L. Rheological Study on Hyaluronic Acid and Its Derivative Solutions. J. Macromol. Sci. Pure Appl. Chem. 1999, 36, 991–1000. DOI: 10.1081/MA-100101578.
  • Laurent, T. C.; Fraser, J. R. E. The Properties and Turnover of Hyaluronan. In Ciba Found Symp; Wiley Online Library: Hoboken, NJ, 1986; Vol. 124, pp 9–29.
  • Chen, W. Y. J. Functions of Hyaluronan in Wound Repair. In Hyaluronan; Elsevier: Netherlands, 2002; pp 147–156.
  • Rayahin, J. E.; Buhrman, J. S.; Zhang, Y.; Koh, T. J.; Gemeinhart, R. A. High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation. ACS Biomater. Sci. Eng. 2015, 1, 481–493. DOI: 10.1021/acsbiomaterials.5b00181.
  • Vigetti, D.; Karousou, E.; Viola, M.; Deleonibus, S.; De Luca, G.; Passi, A. Hyaluronan: Biosynthesis and Signaling. Biochim. Biophys. Acta 2014, 1840, 2452–2459. DOI: 10.1016/j.bbagen.2014.02.001.
  • Misra, S.; Hascall, V. C.; Markwald, R. R.; Ghatak, S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front. Immunol. 2015, 6, 201. DOI: 10.3389/fimmu.2015.00201.
  • Senbanjo, L. T.; Chellaiah, M. A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017, 5, 18. DOI: 10.3389/fcell.2017.00018.
  • Kuo, J. W.; Prestwich, G. D. Materials of Biological Origin-Materials Analysis and Implant Uses, Comprehensive Biomaterials. In Comprehensive Biomaterials, Ducheyne, P., Ed.; Elsevier: Netherlands, 2010.
  • Valle, D.; Romeo, F. A. Cross-Linked Esters of Hyaluronic Acid. Google Patents, September 18, 1990.
  • O'Neill, M. A.; Selvendran, R. R.; Morris, V. J. Structure of the Acidic Extracellular Gelling Polysaccharide Produced by Pseudomonas elodea. Carbohydr. Res. 1983, 124, 123–133. DOI: 10.1016/0008-6215(83)88360-8.
  • Chandrasekaran, R.; Millane, R. P.; Arnott, S.; Atkins, E. D. T. The Crystal Structure of Gellan. Carbohydr. Res. 1988, 175, 1–15. DOI: 10.1016/0008-6215(88)80151-4.
  • Milas, M.; Shi, X.; Rinaudo, M. On the Physicochemical Properties of Gellan Gum. Biopolymers 1990, 30, 451–464. DOI: 10.1002/bip.360300322.
  • Chauhan, A. S.; Jain, N. K.; Diwan, P. V.; Khopade, A. J. Solubility Enhancement of Indomethacin with Poly (Amidoamine) Dendrimers and Targeting to Inflammatory Regions of Arthritic Rats. J. Drug Target 2004, 12, 575–583. DOI: 10.1080/10611860400010655.
  • Gellan Gum. In Thermoreversible Networks: Viscoelastic Properties and Structure of Gels; Springer Berlin Heidelberg: Berlin; Heidelberg, 1997; pp 219–235. DOI: 10.1007/BFb0008712.
  • Kersten, G.; Hirschberg, H. Antigen Delivery Systems. Expert Rev. Vaccines 2004, 3, 453–462. DOI: 10.1586/14760584.3.4.453.
  • Chao, Y.; Xu, L.; Liang, C.; Feng, L.; Xu, J.; Dong, Z.; Tian, L.; Yi, X.; Yang, K.; Liu, Z. Combined Local Immunostimulatory Radioisotope Therapy and Systemic Immune Checkpoint Blockade Imparts Potent Antitumour Responses. Nat. Biomed. Eng. 2018, 2, 611–621. DOI: 10.1038/s41551-018-0262-6.
  • Shu, G.; Zhu, W.; Jiang, Y.; Li, X.; Pan, J.; Zhang, X.; Zhang, X.; Sun, S.-K. Persistent Luminescence Immune Hydrogel for Photodynamic-Immunotherapy of Tumors In Vivo. Adv. Funct. Mater. 2021, 31, 2104472. DOI: 10.1002/adfm.202104472.
  • Castro, F.; Pinto, M. L.; Pereira, C. L.; Serre, K.; Barbosa, M. A.; Vermaelen, K.; Gärtner, F.; Gonçalves, R. M.; De Wever, O.; Oliveira, M. J. Chitosan/γ-PGA Nanoparticles-Based Immunotherapy as Adjuvant to Radiotherapy in Breast Cancer. Biomaterials 2020, 257, 120218. DOI: 10.1016/j.biomaterials.2020.120218.
  • Verbeke, C. S.; Gordo, S.; Schubert, D. A.; Lewin, S. A.; Desai, R. M.; Dobbins, J.; Wucherpfennig, K. W.; Mooney, D. J. Multicomponent Injectable Hydrogels for Antigen-Specific Tolerogenic Immune Modulation. Adv. Healthc. Mater. 2017, 6, 1600773. DOI: 10.1002/adhm.201600773.
  • Verbeke, C. S.; Mooney, D. J. Injectable, Pore-Forming Hydrogels for In Vivo Enrichment of Immature Dendritic Cells. Adv. Healthc. Mater. 2015, 4, 2677–2687. DOI: 10.1002/adhm.201500618.
  • Liu, Y.; Han, Y.-Y.; Lu, S.; Wu, Y.; Li, J.; Sun, X.; Yan, J. Injectable Hydrogel Platform with Biodegradable Dawson-Type Polyoxometalate and R848 for Combinational Photothermal-Immunotherapy of Cancer. Biomater. Sci. 2022, 10, 1257–1266. DOI: 10.1039/D1BM01835C.
  • Polack, F. P.; Thomas, S. J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J. L.; Pérez Marc, G.; Moreira, E. D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 MRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. DOI: 10.1056/NEJMoa2034577.
  • Baden, L. R.; El Sahly, H. M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S. A.; Rouphael, N.; Creech, C. B.; et al. Efficacy and Safety of the MRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. DOI: 10.1056/NEJMoa2035389.
  • Corbett, K. S.; Edwards, D. K.; Leist, S. R.; Abiona, O. M.; Boyoglu-Barnum, S.; Gillespie, R. A.; Himansu, S.; Schäfer, A.; Ziwawo, C. T.; DiPiazza, A. T.; et al. SARS-CoV-2 MRNA Vaccine Design Enabled by Prototype Pathogen Preparedness. Nature 2020, 586, 567–571. DOI: 10.1038/s41586-020-2622-0.
  • Vogel, A. B.; Kanevsky, I.; Che, Y.; Swanson, K. A.; Muik, A.; Vormehr, M.; Kranz, L. M.; Walzer, K. C.; Hein, S.; Güler, A.; et al. BNT162b Vaccines Protect Rhesus Macaques from SARS-CoV-2. Nature 2021, 592, 283–289. DOI: 10.1038/s41586-021-03275-y.
  • Yan, J.; Chen, R.; Zhang, H.; Bryers, J. D. Injectable Biodegradable Chitosan-Alginate 3D Porous Gel Scaffold for MRNA Vaccine Delivery. Macromol. Biosci. 2019, 19, e1800242. DOI: 10.1002/mabi.201800242.
  • Duong, H. T. T.; Thambi, T.; Yin, Y.; Kim, S. H.; Nguyen, T. L.; Phan, V. H. G.; Kim, J.; Jeong, J. H.; Lee, D. S. Degradation-Regulated Architecture of Injectable Smart Hydrogels Enhances Humoral Immune Response and Potentiates Antitumor Activity in Human Lung Carcinoma. Biomaterials 2020, 230, 119599. DOI: 10.1016/j.biomaterials.2019.119599.
  • Lin, H.; Li, Q.; Wang, O.; Rauch, J.; Harm, B.; Viljoen, H. J.; Zhang, C.; Van Wyk, E.; Zhang, C.; Lei, Y. Automated Expansion of Primary Human T Cells in Scalable and Cell-Friendly Hydrogel Microtubes for Adoptive Immunotherapy. Adv. Healthc. Mater. 2018, 7, e1701297. DOI: 10.1002/adhm.201701297.
  • Stephan, S. B.; Taber, A. M.; Jileaeva, I.; Pegues, E. P.; Sentman, C. L.; Stephan, M. T. Biopolymer Implants Enhance the Efficacy of Adoptive T-Cell Therapy. Nat. Biotechnol. 2015, 33, 97–101. DOI: 10.1038/nbt.3104.
  • Ahn, Y. H.; Ren, L.; Kim, S. M.; Seo, S.-H.; Jung, C.-R.; Kim, D. S.; Noh, J.-Y.; Lee, S. Y.; Lee, H.; Cho, M. Y.; et al. A Three-Dimensional Hyaluronic Acid-Based Niche Enhances the Therapeutic Efficacy of Human Natural Killer Cell-Based Cancer Immunotherapy. Biomaterials 2020, 247, 119960. DOI: 10.1016/j.biomaterials.2020.119960.
  • Smith, T. T.; Moffett, H. F.; Stephan, S. B.; Opel, C. F.; Dumigan, A. G.; Jiang, X.; Pillarisetty, V. G.; Pillai, S. P. S.; Wittrup, K. D.; Stephan, M. T. Biopolymers Codelivering Engineered T Cells and STING Agonists Can Eliminate Heterogeneous Tumors. J. Clin. Invest. 2017, 127, 2176–2191. DOI: 10.1172/JCI87624.
  • Sinha, A.; Choi, Y.; Nguyen, M. H.; Nguyen, T. L.; Choi, S. W.; Kim, J. A 3D Macroporous Alginate Graphene Scaffold with an Extremely Slow Release of a Loaded Cargo for In Situ Long-Term Activation of Dendritic Cells. Adv. Healthc. Mater. 2019, 8, e1800571. DOI: 10.1002/adhm.201800571.
  • Schwenter, F.; Zarei, S.; Luy, P.; Padrun, V.; Bouche, N.; Lee, J. S.; Mulligan, R. C.; Morel, P.; Mach, N. Cell Encapsulation Technology as a Novel Strategy for Human Anti-Tumor Immunotherapy. Cancer Gene Ther. 2011, 18, 553–562. DOI: 10.1038/cgt.2011.22.
  • Moran, D. M.; Koniaris, L. G.; Jablonski, E. M.; Cahill, P. A.; Halberstadt, C. R.; McKillop, I. H. Microencapsulation of Engineered Cells to Deliver Sustained High Circulating Levels of Interleukin-6 to Study Hepatocellular Carcinoma Progression. Cell Transplant. 2006, 15, 785–798. DOI: 10.3727/000000006783981477.
  • Cirone, P.; Bourgeois, J. M.; Shen, F.; Chang, P. L. Combined Immunotherapy and Antiangiogenic Therapy of Cancer with Microencapsulated Cells. Hum. Gene Ther. 2004, 15, 945–959. DOI: 10.1089/hum.2004.15.945.
  • Huang, X. Q. Depot Cytokines and Chemokines for Antitumor Therapy in a Mouse Model. 2005.
  • Atik, A. F.; Suryadevara, C. M.; Schweller, R. M.; West, J. L.; Healy, P.; Herndon Ii, J. E.; Congdon, K. L.; Sanchez-Perez, L.; McLendon, R. E.; Archer, G. E.; et al. Hyaluronic Acid Based Low Viscosity Hydrogel as a Novel Carrier for Convection Enhanced Delivery of CAR T Cells. J. Clin. Neurosci. 2018, 56, 163–168. DOI: 10.1016/j.jocn.2018.06.005.
  • Dautzenberg, H.; Schuldt, U.; Grasnick, G.; Karle, P.; Müller, P.; Löhr, M.; Pelegrin, M.; Piechaczyk, M.; Rombs, K. V.; Günzburg, W. H.; et al. Development of Cellulose Sulfate‐Based Polyelectrolyte Complex Microcapsules for Medical Applications. Ann. N. Y. Acad. Sci. 1999, 875, 46–63. DOI: 10.1111/j.1749-6632.1999.tb08493.x.
  • Abastado, J. S.; Gunzburg, W. H.; Brandtner, E. M. The Diversity of Uses for Cellulose Sulphate Encapsulation. Bioencapsulation Living Cells Divers. Med. Appl. Bentham Sci. 2013, 1, 70–92.
  • Salmons, B.; Gunzburg, W. H. Release Characteristics of Cellulose Sulphate Capsules and Production of Cytokines from Encapsulated Cells. Int. J. Pharm. 2018, 548, 15–22. DOI: 10.1016/j.ijpharm.2018.06.040.
  • Yung, C. W.; Bentley, W. E.; Barbari, T. A. Diffusion of Interleukin-2 from Cells Overlaid with Cytocompatible Enzyme-Crosslinked Gelatin Hydrogels. J. Biomed. Mater. Res. A 2010, 95, 25–32. DOI: 10.1002/jbm.a.32740.
  • Engelke, L.; Winter, G.; Hook, S.; Engert, J. Recent Insights into Cutaneous Immunization: How to Vaccinate via the Skin. Vaccine 2015, 33, 4663–4674. DOI: 10.1016/j.vaccine.2015.05.012.
  • Chen, M.-C.; Lai, K.-Y.; Ling, M.-H.; Lin, C.-W. Enhancing Immunogenicity of Antigens through Sustained Intradermal Delivery Using Chitosan Microneedles with a Patch-Dissolvable Design. Acta Biomater. 2018, 65, 66–75. DOI: 10.1016/J.ACTBIO.2017.11.004.
  • Leone, M.; Priester, M. I.; Romeijn, S.; Nejadnik, M. R.; Mönkäre, J.; O'Mahony, C.; Jiskoot, W.; Kersten, G.; Bouwstra, J. A. Hyaluronan-Based Dissolving Microneedles with High Antigen Content for Intradermal Vaccination: Formulation, Physicochemical Characterization and Immunogenicity Assessment. Eur. J. Pharm. Biopharm. 2019, 134, 49–59. DOI: 10.1016/j.ejpb.2018.11.013.
  • Chiu, Y.-H.; Chen, M.-C.; Wan, S.-W. Sodium Hyaluronate/Chitosan Composite Microneedles as a Single-Dose Intradermal Immunization System. Biomacromolecules 2018, 19, 2278–2285. DOI: 10.1021/acs.biomac.8b00441.
  • Ye, Y.; Wang, C.; Zhang, X.; Hu, Q.; Zhang, Y.; Liu, Q.; Wen, D.; Milligan, J.; Bellotti, A.; Huang, L.; et al. A Melanin-Mediated Cancer Immunotherapy Patch. Sci. Immunol. 2017, 2. DOI: 10.1126/sciimmunol.aan5692.
  • Kim, H.; Seong, K.-Y.; Lee, J. H.; Park, W.; Yang, S. Y.; Hahn, S. K. Biodegradable Microneedle Patch Delivering Antigenic Peptide-Hyaluronate Conjugate for Cancer Immunotherapy. ACS Biomater. Sci. Eng. 2019, 5, 5150–5158. DOI: 10.1021/acsbiomaterials.9b00961.
  • Puigmal, N.; Dosta, P.; Solhjou, Z.; Yatim, K.; Ramírez, C.; Choi, J. Y.; Alhaddad, J. B.; Cosme, A. P.; Azzi, J.; Artzi, N. Microneedle-Based Local Delivery of CCL22 and IL-2 Enriches Treg Homing to the Skin Allograft and Enables Temporal Monitoring of Immunotherapy Efficacy. Adv. Funct. Mater. 2021, 31, 2100128. DOI: 10.1002/adfm.202100128.
  • Wang, C.; Ye, Y.; Hochu, G. M.; Sadeghifar, H.; Gu, Z. Enhanced Cancer Immunotherapy by Microneedle Patch-Assisted Delivery of Anti-PD1 Antibody. Nano Lett. 2016, 16, 2334–2340. DOI: 10.1021/acs.nanolett.5b05030.
  • Yang, P.; Lu, C.; Qin, W.; Chen, M.; Quan, G.; Liu, H.; Wang, L.; Bai, X.; Pan, X.; Wu, C. Construction of a Core-Shell Microneedle System to Achieve Targeted Co-delivery of Checkpoint Inhibitors for Melanoma Immunotherapy. Acta Biomater. 2020, 104, 147–157. DOI: 10.1016/j.actbio.2019.12.037.
  • Joo, S.-H.; Kim, J.; Hong, J.; Fakhraei Lahiji, S.; Kim, Y.-H. Dissolvable Self-Locking Microneedle Patches Integrated with Immunomodulators for Cancer Immunotherapy. Adv. Mater. 2023, 35, 2209966. DOI: 10.1002/adma.202209966.
  • Tsai, W.; Tsai, H.; Wong, Y.; Hong, J.; Chang, S.; Lee, M. Preparation and Characterization of Gellan Gum/Glucosamine/Clioquinol Film as Oral Cancer Treatment Patch. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 82, 317–322. DOI: 10.1016/j.msec.2017.05.040.
  • Engelke, L.; Winter, G.; Engert, J. Application of Water-Soluble Polyvinyl Alcohol-Based Film Patches on Laser Microporated Skin Facilitates Intradermal Macromolecule and Nanoparticle Delivery. Eur. J. Pharm. Biopharm. 2018, 128, 119–130. DOI: 10.1016/j.ejpb.2018.04.008.
  • Abioye, A. O.; Issah, S.; Kola-Mustapha, A. T. Ex Vivo Skin Permeation and Retention Studies on Chitosan–Ibuprofen–Gellan Ternary Nanogel Prepared by In Situ Ionic Gelation Technique—A Tool for Controlled Transdermal Delivery of Ibuprofen. Int. J. Pharm. 2015, 490, 112–130. DOI: 10.1016/j.ijpharm.2015.05.030.
  • Bigucci, F.; Abruzzo, A.; Saladini, B.; Gallucci, M. C.; Cerchiara, T.; Luppi, B. Development and Characterization of Chitosan/Hyaluronan Film for Transdermal Delivery of Thiocolchicoside. Carbohydr. Polym. 2015, 130, 32–40. DOI: 10.1016/j.carbpol.2015.04.067.
  • Morad, H.; Jahanshahi, M.; Akbari, J.; Saeedi, M.; Gill, P.; Enayatifard, R. Novel Topical and Transdermal Delivery of Colchicine with Chitosan Based Biocomposite Nanofiberous System; Formulation, Optimization, Characterization, Ex Vivo Skin Deposition/Permeation, and Anti-Melanoma Evaluation. Mater. Chem. Phys. 2021, 263, 124381. DOI: 10.1016/j.matchemphys.2021.124381.
  • Li, Y.; Li, X.; Doughty, A.; West, C.; Wang, L.; Zhou, F.; Nordquist, R. E.; Chen, W. R. Phototherapy Using Immunologically Modified Carbon Nanotubes to Potentiate Checkpoint Blockade for Metastatic Breast Cancer. Nanomedicine 2019, 18, 44–53. DOI: 10.1016/j.nano.2019.02.009.
  • Saha, L. C.; Nag, O. K.; Doughty, A.; Liu, H.; Chen, W. R. An Immunologically Modified Nanosystem Based on Noncovalent Binding Between Single-Walled Carbon Nanotubes and Glycated Chitosan. Technol. Cancer Res. Treat. 2018, 17, 1533033818802313. DOI: 10.1177/1533033818802313.
  • Lin, L.; He, J.; Li, J.; Xu, Y.; Li, J.; Wu, Y. Chitosan Nanoparticles Strengthen Vγ9Vδ2 T-Cell Cytotoxicity Through Upregulation Of Killing Molecules And Cytoskeleton Polarization. Int. J. Nanomedicine 2019, 14, 9325–9336. DOI: 10.2147/IJN.S212898.
  • Wusiman, A.; Gu, P.; Liu, Z.; Xu, S.; Zhang, Y.; Hu, Y.; Liu, J.; Wang, D.; Huang, X. Cationic Polymer Modified PLGA Nanoparticles Encapsulating Alhagi Honey Polysaccharides as a Vaccine Delivery System for Ovalbumin to Improve Immune Responses. Int. J. Nanomedicine 2019, 14, 3221–3234. DOI: 10.2147/IJN.S203072.
  • Tahamtan, A.; Barati, M.; Tabarraei, A.; Mohebbi, S. R.; Shirian, S.; Gorji, A.; Ghaemi, A. Antitumor Immunity Induced by Genetic Immunization with Chitosan Nanoparticle Formulated Adjuvanted for HPV-16 E7 DNA Vaccine. Iran. J. Immunol. 2018, 15, 269–280. DOI: 10.22034/IJI.2018.39396.
  • Hoemann, C. D.; Fong, D. 3 – Immunological Responses to Chitosan for Biomedical Applications. In Chitosan Based Biomaterials, Jennings, J. A., Bumgardner, J. D. B. T.-C. B. B., Eds.; Woodhead Publishing: United Kingdom, 2017; Vol. 1, pp 45–79. DOI: 10.1016/B978-0-08-100230-8.00003-0.
  • Zaharoff, D. A.; Hance, K. W.; Rogers, C. J.; Schlom, J.; Greiner, J. W. Intratumoral Immunotherapy of Established Solid Tumors with Chitosan/IL-12. J. Immunother. 2010, 33, 697–705. DOI: 10.1097/CJI.0b013e3181eb826d.
  • Choi, J. J.; Le, Q.-V.; Kim, D.; Kim, Y. B.; Shim, G.; Oh, Y.-K. High Molecular Weight Chitosan-Complexed RNA Nanoadjuvant for Effective Cancer Immunotherapy. Pharmaceutics 2019, 11, 680. DOI: 10.3390/pharmaceutics11120680.
  • Maiyo, F.; Singh, M. Folate-Targeted MRNA Delivery Using Chitosan-Functionalized Selenium Nanoparticles: Potential in Cancer Immunotherapy. Pharmaceuticals 2019, 12 (4),164. DOI: 10.3390/ph12040164.
  • Masjedi, A.; Hassannia, H.; Atyabi, F.; Rastegari, A.; Hojjat-Farsangi, M.; Namdar, A.; Soleimanpour, H.; Azizi, G.; Nikkhoo, A.; Ghalamfarsa, G.; et al. Downregulation of A2AR by SiRNA Loaded PEG-Chitosan-Lactate Nanoparticles Restores the T Cell Mediated Anti-Tumor Responses through Blockage of PKA/CREB Signaling Pathway. Int. J. Biol. Macromol. 2019, 133, 436–445. DOI: 10.1016/j.ijbiomac.2019.03.223.
  • Arab, S.; Kheshtchin, N.; Ajami, M.; Ashurpoor, M.; Safvati, A.; Namdar, A.; Mirzaei, R.; Mousavi Niri, N.; Jadidi-Niaragh, F.; Ghahremani, M. H.; et al. Increased Efficacy of a Dendritic Cell-Based Therapeutic Cancer Vaccine with Adenosine Receptor Antagonist and CD73 Inhibitor. Tumour Biol. 2017, 39, 1010428317695021. DOI: 10.1177/1010428317695021.
  • Dong, Z.; Kang, Y.; Yuan, Q.; Luo, M.; Gu, Z. H(2)O(2)-Responsive Nanoparticle Based on the Supramolecular Self-Assemble of Cyclodextrin. Front. Pharmacol. 2018, 9, 552. DOI: 10.3389/fphar.2018.00552.
  • Lisanti, M. P.; Martinez-Outschoorn, U. E.; Lin, Z.; Pavlides, S.; Whitaker-Menezes, D.; Pestell, R. G.; Howell, A.; Sotgia, F. Hydrogen Peroxide Fuels Aging, Inflammation, Cancer Metabolism and Metastasis: The Seed and Soil Also Needs “Fertilizer”. Cell Cycle 2011, 10, 2440–2449. DOI: 10.4161/cc.10.15.16870.
  • Cai, Z.; Xin, F.; Wei, Z.; Wu, M.; Lin, X.; Du, X.; Chen, G.; Zhang, D.; Zhang, Z.; Liu, X.; et al. Photodynamic Therapy Combined with Antihypoxic Signaling and CpG Adjuvant as an In Situ Tumor Vaccine Based on Metal-Organic Framework Nanoparticles to Boost Cancer Immunotherapy. Adv. Healthc. Mater. 2020, 9, e1900996. DOI: 10.1002/adhm.201900996.
  • Sun, W.; Du, Y.; Liang, X.; Yu, C.; Fang, J.; Lu, W.; Guo, X.; Tian, J.; Jin, Y.; Zheng, J. Synergistic Triple-Combination Therapy with Hyaluronic Acid-Shelled PPy/CPT Nanoparticles Results in Tumor Regression and Prevents Tumor Recurrence and Metastasis in 4T1 Breast Cancer. Biomaterials 2019, 217, 119264. DOI: 10.1016/j.biomaterials.2019.119264.
  • Bartheldyová, E.; Effenberg, R.; Mašek, J.; Procházka, L.; Knötigová, P. T.; Kulich, P.; Hubatka, F.; Velínská, K.; Zelníčková, J.; Zouharová, D.; et al. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressi. Bioconjug. Chem. 2018, 29, 2343–2356. DOI: 10.1021/acs.bioconjchem.8b00311.
  • Lee, H.; Park, H.; Yu, H. S.; Na, K.; Oh, K. T.; Lee, E. S. Dendritic Cell-Targeted PH-Responsive Extracellular Vesicles for Anticancer Vaccination. Pharmaceutics 2019, 11, 54. DOI: 10.3390/pharmaceutics11020054.
  • He, M.; Huang, L.; Hou, X.; Zhong, C.; Bachir, Z. A.; Lan, M.; Chen, R.; Gao, F. Efficient Ovalbumin Delivery Using a Novel Multifunctional Micellar Platform for Targeted Melanoma Immunotherapy. Int. J. Pharm. 2019, 560, 1–10. DOI: 10.1016/j.ijpharm.2019.01.027.
  • Li, C.-X.; Zhang, Y.; Dong, X.; Zhang, L.; Liu, M.-D.; Li, B.; Zhang, M.-K.; Feng, J.; Zhang, X.-Z. Artificially Reprogrammed Macrophages as Tumor-Tropic Immunosuppression-Resistant Biologics to Realize Therapeutics Production and Immune Activation. Adv. Mater. 2019, 31, e1807211. DOI: 10.1002/adma.201807211.
  • Thiery, J.; Keefe, D.; Boulant, S.; Boucrot, E.; Walch, M.; Martinvalet, D.; Goping, I. S.; Bleackley, R. C.; Kirchhausen, T.; Lieberman, J. Perforin Pores in the Endosomal Membrane Trigger the Release of Endocytosed Granzyme B into the Cytosol of Target Cells. Nat. Immunol. 2011, 12, 770–777. DOI: 10.1038/ni.2050.
  • Qian, X.; Shi, Z.; Qi, H.; Zhao, M.; Huang, K.; Han, D.; Zhou, J.; Liu, C.; Liu, Y.; Lu, Y.; et al. A Novel Granzyme B Nanoparticle Delivery System Simulates Immune Cell Functions for Suppression of Solid Tumors. Theranostics 2019, 9, 7616–7627. DOI: 10.7150/thno.35900.
  • Li, Q.; Zhang, D.; Zhang, J.; Jiang, Y.; Song, A.; Li, Z.; Luan, Y. A Three-in-One Immunotherapy Nanoweapon via Cascade-Amplifying Cancer-Immunity Cycle against Tumor Metastasis, Relapse, and Postsurgical Regrowth. Nano Lett. 2019, 19, 6647–6657. DOI: 10.1021/acs.nanolett.9b02923.
  • Lu, R.; Groer, C.; Kleindl, P. A.; Moulder, K. R.; Huang, A.; Hunt, J. R.; Cai, S.; Aires, D. J.; Berkland, C.; Forrest, M. L. Formulation and Preclinical Evaluation of a Toll-Like Receptor 7/8 Agonist as an Anti-Tumoral Immunomodulator. J. Control Release 2019, 306, 165–176. DOI: 10.1016/j.jconrel.2019.06.003.
  • Gao, F.; Zhang, C.; Qiu, W.-X.; Dong, X.; Zheng, D.-W.; Wu, W.; Zhang, X.-Z. PD-1 Blockade for Improving the Antitumor Efficiency of Polymer-Doxorubicin Nanoprodrug. Small 2018, 14, e1802403. DOI: 10.1002/smll.201802403.
  • Salazar, A. Method for Preparation of Poly-Iclc and Uses Thereof. WO2005102278A1, July 1, 2003.
  • Hammerich, L.; Marron, T. U.; Upadhyay, R.; Svensson-Arvelund, J.; Dhainaut, M.; Hussein, S.; Zhan, Y.; Ostrowski, D.; Yellin, M.; Marsh, H.; et al. Systemic Clinical Tumor Regressions and Potentiation of PD1 Blockade with In Situ Vaccination. Nat. Med. 2019, 25, 814–824. DOI: 10.1038/s41591-019-0410-x.
  • Chapman, N. M.; Gottschalk, S.; Chi, H. Preventing Ubiquitination Improves CAR T Cell Therapy via ‘CAR Merry-Go-Around’. Immunity 2020, 53, 243–245. DOI: 10.1016/j.immuni.2020.07.023.
  • Li, W.; Qiu, S.; Chen, J.; Jiang, S.; Chen, W.; Jiang, J.; Wang, F.; Si, W.; Shu, Y.; Wei, P.; et al. Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity 2020, 53, 456–470.e6. DOI: 10.1016/j.immuni.2020.07.011.
  • Tie, Y.; Tang, F.; Wei, Y.; Wei, X. Immunosuppressive Cells in Cancer: Mechanisms and Potential Therapeutic Targets. J. Hematol. Oncol. 2022, 15, 61. DOI: 10.1186/s13045-022-01282-8.
  • Li, X.; Wang, S.; Mu, W.; Barry, J.; Han, A.; Carpenter, R. L.; Jiang, B.-H.; Peiper, S. C.; Mahoney, M. G.; Aplin, A. E.; et al. Reactive Oxygen Species Reprogram Macrophages to Suppress Antitumor Immune Response through the Exosomal MiR-155-5p/PD-L1 Pathway. J. Exp. Clin. Cancer Res. 2022, 41, 41. DOI: 10.1186/s13046-022-02244-1.
  • Muth, S.; Klaric, A.; Radsak, M.; Schild, H.; Probst, H. C. CD27 Expression on Treg Cells Limits Immune Responses against Tumors. J. Mol. Med. 2022, 100, 439–449. DOI: 10.1007/s00109-021-02116-9.
  • Assi, H. H.; Wong, C.; Tipton, K. A.; Mei, L.; Wong, K.; Razo, J.; Chan, C.; Howng, B.; Sagert, J.; Krimm, M.; et al. Conditional PD-1/PD-L1 Probody Therapeutics Induce Comparable Antitumor Immunity but Reduced Systemic Toxicity Compared with Traditional Anti-PD-1/PD-L1 Agents. Cancer Immunol. Res. 2021, 9, 1451–1464. DOI: 10.1158/2326-6066.CIR-21-0031.
  • Boustany, L. M.; LaPorte, S. L.; Wong, L.; White, C.; Vinod, V.; Shen, J.; Yu, W.; Koditek, D.; Winter, M. B.; Moore, S. J.; et al. A Probody T Cell-Engaging Bispecific Antibody Targeting EGFR and CD3 Inhibits Colon Cancer Growth with Limited Toxicity. Cancer Res. 2022, 82, 4288–4298. DOI: 10.1158/0008-5472.CAN-21-2483.
  • Naing, A.; Thistlethwaite, F.; De Vries, E. G. E.; Eskens, F. A. L. M.; Uboha, N.; Ott, P. A.; LoRusso, P.; Garcia-Corbacho, J.; Boni, V.; Bendell, J.; et al. CX-072 (Pacmilimab), a Probody (®) PD-L1 Inhibitor, in Advanced or Recurrent Solid Tumors (PROCLAIM-CX-072): An Open-Label Dose-Finding and First-in-Human Study. J. Immunother. Cancer 2021, 9, e002447. DOI: 10.1136/jitc-2021-002447.
  • Han, X.; Bryson, P. D.; Zhao, Y.; Cinay, G. E.; Li, S.; Guo, Y.; Siriwon, N.; Wang, P. Masked Chimeric Antigen Receptor for Tumor-Specific Activation. Mol. Ther. 2017, 25, 274–284. DOI: 10.1016/j.ymthe.2016.10.011.
  • Juillerat, A.; Marechal, A.; Filhol, J. M.; Valogne, Y.; Valton, J.; Duclert, A.; Duchateau, P.; Poirot, L. An Oxygen Sensitive Self-Decision Making Engineered CAR T-Cell. Sci. Rep. 2017, 7, 39833. DOI: 10.1038/srep39833.
  • Alkhader, E.; Billa, N.; Roberts, C. J. Mucoadhesive Chitosan-Pectinate Nanoparticles for the Delivery of Curcumin to the Colon. AAPS PharmSciTech 2017, 18, 1009–1018. DOI: 10.1208/s12249-016-0623-y.
  • Saeed, R. M.; Dmour, I.; Taha, M. O. Stable Chitosan-Based Nanoparticles Using Polyphosphoric Acid or Hexametaphosphate for Tandem Ionotropic/Covalent Crosslinking and Subsequent Investigation as Novel Vehicles for Drug Delivery. Front. Bioeng. Biotechnol. 2020, 8, 4. DOI: 10.3389/fbioe.2020.00004.
  • Espinosa-Cano, E.; Huerta-Madronal, M.; Camara-Sanchez, P.; Seras-Franzoso, J.; Schwartz, S. Jr.; Abasolo, I.; San Román, J.; Aguilar, M. R. Hyaluronic Acid (HA)-Coated Naproxen-Nanoparticles Selectively Target Breast Cancer Stem Cells through COX-Independent Pathways. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 124, 112024. DOI: 10.1016/j.msec.2021.112024.
  • Festas, A. J.; Ramos, A.; Davim, J. P. Medical Devices Biomaterials – A Review. Proc. Inst. Mech. Eng. Part L. J. Mater. Des. Appl. 2020, 234, 218–228. DOI: 10.1177/1464420719882458.
  • Zhu, L.; Ge, F.; Yang, L.; Li, W.; Wei, S.; Tao, Y.; Du, G. Alginate Particles with Ovalbumin (OVA) Peptide Can Serve as a Carrier and Adjuvant for Immune Therapy in B16-OVA Cancer Model. Med. Sci. Monit. Basic Res. 2017, 23, 166–172. DOI: 10.12659/MSMBR.901576.
  • Kim, S.; Heo, R.; Song, S. H.; Song, K.-H.; Shin, J. M.; Oh, S. J.; Lee, H.-J.; Chung, J. E.; Park, J. H.; Kim, T. W. PD-L1 SiRNA-Hyaluronic Acid Conjugate for Dual-Targeted Cancer Immunotherapy. J. Control Release 2022, 346, 226–239. DOI: 10.1016/j.jconrel.2022.04.023.
  • Dalla Pietà, A.; Carpanese, D.; Grigoletto, A.; Tosi, A.; Dalla Santa, S.; Pedersen, G. K.; Christensen, D.; Meléndez-Alafort, L.; Barbieri, V.; De Benedictis, P.; et al. Hyaluronan Is a Natural and Effective Immunological Adjuvant for Protein-Based Vaccines. Cell Mol. Immunol. 2021, 18, 1197–1210. DOI: 10.1038/s41423-021-00667-y.
  • Lee, S.-J.; Lee, H.-S.; Hwang, Y.-H.; Kim, J.-J.; Kang, K.-Y.; Kim, S. J.; Kim, H. K.; Kim, J. D.; Jeong, D. H.; Paik, M.-J.; et al. Enhanced Anti-Tumor Immunotherapy by Dissolving Microneedle Patch Loaded Ovalbumin. PLoS One 2019, 14, e0220382. DOI: 10.1371/journal.pone.0220382.
  • AbdelAllah, N. H.; Gaber, Y.; AbdelGhani, S.; Rashed, M. E.; Azmy, A. F. Chitosan and Alginate Salt as Biomaterials Are Potential Natural Adjuvants for Killed Cholera Vaccine. J. Biomed. Mater. Res. A 2021, 109, 2462–2470. DOI: 10.1002/jbm.a.37240.
  • Norpi, A. S. M.; Nordin, M. L.; Ahmad, N.; Katas, H.; Fuaad, A. A.-H. A.; Sukri, A.; Marasini, N.; Azmi, F. New Modular Platform Based on Multi-Adjuvanted Amphiphilic Chitosan Nanoparticles for Efficient Lipopeptide Vaccine Delivery against Group A Streptococcus. Asian J. Pharm. Sci. 2022, 17, 435–446. DOI: 10.1016/j.ajps.2022.04.002.
  • Catania, G.; Rodella, G.; Vanvarenberg, K.; Préat, V.; Malfanti, A. Combination of Hyaluronic Acid Conjugates with Immunogenic Cell Death Inducer and CpG for Glioblastoma Local Chemo-Immunotherapy Elicits an Immune Response and Induces Long-Term Survival. Biomaterials 2023, 294, 122006. DOI: 10.1016/j.biomaterials.2023.122006.
  • Cao, F.; Yan, M.; Liu, Y.; Liu, L.; Ma, G. Photothermally Controlled MHC Class I Restricted CD8+ T-Cell Responses Elicited by Hyaluronic Acid Decorated Gold Nanoparticles as a Vaccine for Cancer Immunotherapy. Adv. Healthc. Mater. 2018, 7, 1701439. DOI: 10.1002/adhm.201701439.
  • Wu, C.; Xu, J.; Xie, Z.; Huang, H.; Li, N.; Wei, X.; Li, T.; Yang, H.; Li, S.; Qin, X.; et al. Light-Responsive Hyaluronic Acid Nanomicelles Co-Loaded with an IDO Inhibitor Focus Targeted Photoimmunotherapy against “Immune Cold” Cancer. Biomater. Sci. 2021, 9, 8019–8031. DOI: 10.1039/d1bm01409a.
  • Shan, G.; Meihe, L.; Minchao, K.; Rui, Z.; Xiaopeng, W.; Guangjian, Z.; Jin, Z. Identification and Validation of Osteopontin and Receptor for Hyaluronic Acid-Mediated Motility (RHAMM, CD168) for Potential Immunotherapeutic Significance of in Lung Squamous Cell Carcinoma. Int. Immunopharmacol. 2022, 107, 108715. DOI: 10.1016/j.intimp.2022.108715.
  • Claverie, M.; McReynolds, C.; Petitpas, A.; Thomas, M.; Fernandes, S. C. M. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers 2020, 12, 1002. DOI: 10.3390/polym12051002.
  • Saeed, A. F. U. H.; Su, J.; Ouyang, S. Marine-Derived Drugs: Recent Advances in Cancer Therapy and Immune Signaling. Biomed. Pharmacother. 2021, 134, 111091. DOI: 10.1016/j.biopha.2020.111091.