1,338
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Advances in Polymers of Intrinsic Microporosity (PIMs)-Based Materials for Membrane, Environmental, Catalysis, Sensing and Energy Applications

, , &
Pages 251-305 | Received 21 Feb 2023, Accepted 09 Jul 2023, Published online: 24 Jul 2023

References

  • McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D. Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials. Chemistry 2005, 11, 2610–2620. DOI: 10.1002/chem.200400860.
  • Roshanfekr Rad, L.; Anbia, M. Zeolite-Based Composites for the Adsorption of Toxic Matters from Water: A Review. J. Environ. Chem. Eng 2021, 9, 106088. DOI: 10.1016/j.jece.2021.106088.
  • Mariana, M.; H.p.s, A. K.; Mistar, E. M.; Yahya, E. B.; Alfatah, T.; Danish, M.; Amayreh, M. Recent Advances in Activated Carbon Modification Techniques for Enhanced Heavy Metal Adsorption. J. Water Process Eng. 2021, 43, 102221. DOI: 10.1016/j.jwpe.2021.102221.
  • Wang, Q.; Astruc, D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. DOI: 10.1021/acs.chemrev.9b00223.
  • Lee, J.-S. M.; Cooper, A. I. Advances in Conjugated Microporous Polymers. Chem. Rev. 2020, 120, 2171–2214. DOI: 10.1021/acs.chemrev.9b00399.
  • Tian, Y.; Zhu, G. Porous Aromatic Frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986. DOI: 10.1021/acs.chemrev.9b00687.
  • Lee, J.-Y.; Wood, C. D.; Bradshaw, D.; Rosseinsky, M. J.; Cooper, A. I. Hydrogen Adsorption in Microporous Hypercrosslinked Polymers. Chem. Commun. (Camb) 2006, 21, 2670–2672. DOI: 10.1039/b604625h.
  • Li, X.; Yang, C.; Sun, B.; Cai, S.; Chen, Z.; Lv, Y.; Zhang, J.; Liu, Y. Expeditious Synthesis of Covalent Organic Frameworks: A Review. J. Mater. Chem. A 2020, 8, 16045–16060. DOI: 10.1039/D0TA05894G.
  • Wang, A.; Tan, R.; Breakwell, C.; Wei, X.; Fan, Z.; Ye, C.; Malpass-Evans, R.; Liu, T.; Zwijnenburg, M. A.; Jelfs, K. E.; et al. Solution-Processable Redox-Active Polymers of Intrinsic Microporosity for Electrochemical Energy Storage. J. Am. Chem. Soc. 2022, 144, 17198–17208. DOI: 10.1021/jacs.2c07575.
  • Ye, H.; Zhang, C.; Huo, C.; Zhao, B.; Zhou, Y.; Wu, Y.; Shi, S. Advances in the Application of Polymers of Intrinsic Microporosity in Liquid Separation and Purification: Membrane Separation and Adsorption Separation. Polym. Rev 2021, 61, 239–279. DOI: 10.1080/15583724.2020.1821059.
  • Kim, H. J.; Kim, D.-G.; Lee, K.; Baek, Y.; Yoo, Y.; Kim, Y. S.; Kim, B. G.; Lee, J.-C. A Carbonaceous Membrane Based on a Polymer of Intrinsic Microporosity (PIM-1) for Water Treatment. Sci. Rep. 2016, 6, 36078. DOI: 10.1038/srep36078.
  • Usman, M.; Ahmed, A.; Yu, B.; Peng, Q.; Shen, Y.; Cong, H. A Review of Different Synthetic Approaches of Amorphous Intrinsic Microporous Polymers and Their Potential Applications in Membrane-Based Gases Separation. Eur. Polym. J 2019, 120, 109262. DOI: 10.1016/j.eurpolymj.2019.109262.
  • Halder, K.; Neumann, S.; Bengtson, G.; Khan, M. M.; Filiz, V.; Abetz, V. Polymers of Intrinsic Microporosity Postmodified by Vinyl Groups for Membrane Applications. Macromolecules 2018, 51, 7309–7319. DOI: 10.1021/acs.macromol.8b01252.
  • Cheng, P.; Wang, C.; Kaneti, Y. V.; Eguchi, M.; Lin, J.; Yamauchi, Y.; Na, J. Practical MOF Nanoarchitectonics: New Strategies for Enhancing the Processability of MOFs for Practical Applications. Langmuir 2020, 36, 4231–4249. DOI: 10.1021/acs.langmuir.0c00236.
  • Yuan, H.; Liu, G.; Qiao, Z.; Li, N.; Buenconsejo, P. J. S.; Xi, S.; Karmakar, A.; Li, M.; Cai, H.; Pennycook, S. J.; Zhao, D. Solution-Processable Metal–Organic Framework Nanosheets with Variable Functionalities. Adv. Mater. 2021, 33, 2101257. DOI: 10.1002/adma.202101257.
  • Rodríguez-San-Miguel, D.; Zamora, F. Processing of Covalent Organic Frameworks: An Ingredient for a Material to Succeed. Chem. Soc. Rev. 2019, 48, 4375–4386. DOI: 10.1039/C9CS00258H.
  • Haase, F.; Lotsch, B. V. Solving the COF Trilemma: Towards Crystalline, Stable and Functional Covalent Organic Frameworks. Chem. Soc. Rev. 2020, 49, 8469–8500. DOI: 10.1039/d0cs01027h.
  • Ding, M.; Cai, X.; Jiang, H.-L. Improving MOF Stability: Approaches and Applications. Chem. Sci. 2019, 10, 10209–10230. DOI: 10.1039/c9sc03916c.
  • Dou, Y.; Zhang, W.; Kaiser, A. Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications. Adv. Sci. (Weinh) 2020, 7, 1902590. DOI: 10.1002/advs.201902590.
  • McKeown, N. B. Polymers of Intrinsic Microporosity (PIMs). Polymer 2020, 202, 122736. DOI: 10.1016/j.polymer.2020.122736.
  • Sherrington, D. C.; Kybett, A. P.; McKeown, N. B.; Li, H.; Makhseed, S. Towards Phthalocyanine Network Polymers for Heterogeneous Catalysis. In Supported Catalysts and Their Applications; The Royal Society of Chemistry: Cambridge, 2001, pp 214–218.
  • Weber, J.; Du, N.; Guiver, M. D. Influence of Intermolecular Interactions on the Observable Porosity in Intrinsically Microporous Polymers. Macromolecules 2011, 44, 1763–1767. DOI: 10.1021/ma101447h.
  • McKeown, N. B. Organic Molecules of Intrinsic Microporosity. Org. Mater 2020, 2, 020–025. DOI: 10.1055/s-0039-3402512.
  • McKeown, N. B.; Budd, P. M. Polymers of Intrinsic Microporosity (PIMs): Organic Materials for Membrane Separations, Heterogeneous Catalysis and Hydrogen Storage. Chem. Soc. Rev. 2006, 35, 675–683. DOI: 10.1039/b600349d.
  • Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Polymers of Intrinsic Microporosity (PIMs): Robust, Solution-Processable, Organic Nanoporous Materials. Chem. Commun. 2004, 2, 230–231. DOI: 10.1039/b311764b.
  • Antonangelo, A. R.; Hawkins, N.; Tocci, E.; Muzzi, C.; Fuoco, A.; Carta, M. Tröger’s Base Network Polymers of Intrinsic Microporosity (TB-PIMs) with Tunable Pore Size for Heterogeneous Catalysis. J. Am. Chem. Soc. 2022, 144, 15581–15594. DOI: 10.1021/jacs.2c04739.
  • Tang, Z.; Xu, S.; Yin, N.; Yang, Y.; Deng, Q.; Shen, J.; Zhang, X.; Wang, T.; He, H.; Lin, X.; et al. Reaction Site Designation by Intramolecular Electric Field in Tröger’s-Base-Derived Conjugated Microporous Polymer for near-Unity Selectivity of CO2 Photoconversion. Adv. Mater 2023, 35, 2210693.
  • Chen, J. H.; Choo, Y. S. L.; Gao, W. T.; Gao, X. L.; Cai, Z. H.; Wang, J. J.; Zhang, Q. G.; Zhu, A. M.; Liu, Q. L. Tröger’s Base Microporous Anion Exchange Membranes with Hyperbranched Structure for Fuel Cells. ACS Appl. Energy Mater. 2022, 5, 11797–11806. DOI: 10.1021/acsaem.2c02317.
  • Ma, C.; Urban, J. J. Polymers of Intrinsic Microporosity (PIMs) Gas Separation Membranes: A Mini Review. Proc. Nat. Res. Soc 2018, 2, 2002. DOI: 10.11605/j.pnrs.201802002.
  • McKeown, N. B. The Synthesis of Polymers of Intrinsic Microporosity (PIMs). Sci. China Chem. 2017, 60, 1023–1032. DOI: 10.1007/s11426-017-9058-x.
  • Cheng, G.; Bonillo, B.; Sprick, R. S.; Adams, D. J.; Hasell, T.; Cooper, A. I. Conjugated Polymers of Intrinsic Microporosity (C-PIMs). Adv. Funct. Mater. 2014, 24, 5219–5224. DOI: 10.1002/adfm.201401001.
  • Ranganathan, K.; Anbanandam, P. Soluble, Microporous Ladder Polymers Formed by Stepwise Nucleophilic Substitution of Octafluorocyclopentene. Polym. Chem. 2015, 6, 4560–4564. DOI: 10.1039/C5PY00359H.
  • Liu, S.; Jin, Z.; Teo, Y. C.; Xia, Y. Efficient Synthesis of Rigid Ladder Polymers via Palladium Catalyzed Annulation. J. Am. Chem. Soc. 2014, 136, 17434–17437. DOI: 10.1021/ja5110415.
  • McKeown, N. B. The Structure-Property Relationships of Polymers of Intrinsic Microporosity (PIMs). Curr. Opin. Chem. Eng 2022, 36, 100785. DOI: 10.1016/j.coche.2021.100785.
  • Zhu, J.; Yuan, S.; Wang, J.; Zhang, Y.; Tian, M.; Van der Bruggen, B. Microporous Organic Polymer-Based Membranes for Ultrafast Molecular Separations. Prog. Polym. Sci 2020, 110, 101308. DOI: 10.1016/j.progpolymsci.2020.101308.
  • Hou, R.; Smith, S. J. D.; Konstas, K.; Doherty, C. M.; Easton, C. D.; Park, J.; Yoon, H.; Wang, H.; Freeman, B. D.; Hill, M. R. Synergistically Improved PIM-1 Membrane Gas Separation Performance by PAF-1 Incorporation and UV Irradiation. J. Mater. Chem. A 2022, 10, 10107–10119. DOI: 10.1039/D2TA00138A.
  • He, S.; Zhu, B.; Li, S.; Zhang, Y.; Jiang, X.; Hon Lau, C.; Shao, L. Recent Progress in PIM-1 Based Membranes for Sustainable CO2 Separations: Polymer Structure Manipulation and Mixed Matrix Membrane Design. Sep. Purif. Technol 2022, 284, 120277. DOI: 10.1016/j.seppur.2021.120277.
  • Bandehali, S.; Ebadi Amooghin, A.; Sanaeepur, H.; Ahmadi, R.; Fuoco, A.; Jansen, J. C.; Shirazian, S. Polymers of Intrinsic Microporosity and Thermally Rearranged Polymer Membranes for Highly Efficient Gas Separation. Sep. Purif. Technol 2021, 278, 119513. DOI: 10.1016/j.seppur.2021.119513.
  • Luque-Alled, J. M.; Ameen, A. W.; Alberto, M.; Tamaddondar, M.; Foster, A. B.; Budd, P. M.; Vijayaraghavan, A.; Gorgojo, P. Gas Separation Performance of MMMs Containing (PIM-1)-Functionalized GO Derivatives. J. Membr. Sci 2021, 623, 118902. DOI: 10.1016/j.memsci.2020.118902.
  • Dong, H.; Zhu, Z.; Li, K.; Li, Q.; Ji, W.; He, B.; Li, J.; Ma, X. Significantly Improved Gas Separation Properties of Sulfonated PIM-1 by Direct Sulfonation Using SO3 Solution. J. Membr. Sci 2021, 635, 119440. DOI: 10.1016/j.memsci.2021.119440.
  • Zhu, Z.; Dong, H.; Li, K.; Li, Q.; Li, J.; Ma, X. One-Step Synthesis of Hydroxyl-Functionalized Fully Carbon Main Chain PIMs via a Friedel-Crafts Reaction for Efficient Gas Separation. Sep. Purif. Technol 2021, 262, 118313. DOI: 10.1016/j.seppur.2021.118313.
  • Ji, W.; Li, K.; Min, Y.-G.; Shi, W.; Li, J.; Ma, X. Remarkably Enhanced Gas Separation Properties of PIM-1 at Sub-Ambient Temperatures. J. Membr. Sci 2021, 623, 119091. DOI: 10.1016/j.memsci.2021.119091.
  • Balçık, M.; Tantekin-Ersolmaz, S. B.; Pinnau, I.; Ahunbay, M. G. CO2/CH4 Mixed-Gas Separation in PIM-1 at High Pressures: Bridging Atomistic Simulations with Process Modeling. J. Membr. Sci 2021, 640, 119838. DOI: 10.1016/j.memsci.2021.119838.
  • Foster, A. B.; Beal, J. L.; Tamaddondar, M.; Luque-Alled, J. M.; Robertson, B.; Mathias, M.; Gorgojo, P.; Budd, P. M. Importance of Small Loops within PIM-1 Topology on Gas Separation Selectivity in Thin Film Composite Membranes. J. Mater. Chem. A 2021, 9, 21807–21823. DOI: 10.1039/D1TA03712A.
  • Chen, X.; Wu, L.; Yang, H.; Qin, Y.; Ma, X.; Li, N. Tailoring the Microporosity of Polymers of Intrinsic Microporosity for Advanced Gas Separation by Atomic Layer Deposition. Angew. Chem. Int. Ed. Engl. 2021, 60, 17875–17880. DOI: 10.1002/anie.202016901.
  • Ma, X.; Zhu, Z.; Shi, W.; Ji, W.; Li, J.; Wang, Y.; Pinnau, I. Unprecedented Gas Separation Performance of a Difluoro-Functionalized Triptycene-Based Ladder PIM Membrane at Low Temperature. J. Mater. Chem. A 2021, 9, 5404–5414. DOI: 10.1039/D0TA09703A.
  • Stanovsky, P.; Karaszova, M.; Petrusova, Z.; Monteleone, M.; Jansen, J. C.; Comesaña-Gándara, B.; McKeown, N. B.; Izak, P. Upgrading of Raw Biogas Using Membranes Based on the Ultrapermeable Polymer of Intrinsic Microporosity PIM-TMN-Trip. J. Membr. Sci 2021, 618, 118694. DOI: 10.1016/j.memsci.2020.118694.
  • Du, N.; Robertson, G. P.; Song, J.; Pinnau, I.; Guiver, M. D. High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties. Macromolecules 2009, 42, 6038–6043. DOI: 10.1021/ma9009017.
  • Wang, L.; Zhao, Y.; Fan, B.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Marken, F. Polymer of Intrinsic Microporosity (PIM) Films and Membranes in Electrochemical Energy Storage and Conversion: A Mini-Review. Electrochem. Commun 2020, 118, 106798. DOI: 10.1016/j.elecom.2020.106798.
  • Alnajrani, M. N.; Alsager, O. A. Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism. Sci. Rep. 2020, 10, 794. DOI: 10.1038/s41598-020-57616-4.
  • Madrid, E.; Cottis, P.; Rong, Y.; Rogers, A. T.; Stone, J. M.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Marken, F. Water Desalination Concept Using an Ionic Rectifier Based on a Polymer of Intrinsic Microporosity (PIM). J. Mater. Chem. A 2015, 3, 15849–15853. DOI: 10.1039/C5TA04092B.
  • Abdulhamid, M. A.; Szekely, G. Organic Solvent Nanofiltration Membranes Based on Polymers of Intrinsic Microporosity. Curr. Opin. Chem. Eng 2022, 36, 100804. DOI: 10.1016/j.coche.2022.100804.
  • He, D.; Rong, Y.; Kou, Z.; Mu, S.; Peng, T.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Marken, F. Intrinsically Microporous Polymer Slows down Fuel Cell Catalyst Corrosion. Electrochem. Commun 2015, 59, 72–76. DOI: 10.1016/j.elecom.2015.07.008.
  • Antonangelo, A. R.; Hawkins, N.; Carta, M. Polymers of Intrinsic Microporosity (PIMs) for Catalysis: A Perspective. Curr. Opin. Chem. Eng 2022, 35, 100766. DOI: 10.1016/j.coche.2021.100766.
  • Marken, F.; Wang, L.; Zhao, Y.; Li, Z.; Amiri, M.; Imanzadeh, H. Polymers of Intrinsic Microporosity (PIMs) in Sensing and in Electroanalysis. Curr. Opin. Chem. Eng 2022, 35, 100765. DOI: 10.1016/j.coche.2021.100765.
  • Wang, J. X.; Wang, Y.; Nadinov, I.; Yin, J.; Gutiérrez-Arzaluz, L.; Healing, G.; Alkhazragi, O.; Cheng, Y.; Jia, J.; Alsadun, N.; et al. Metal-Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication. J. Am. Chem. Soc. 2022, 144, 6813–6820. DOI: 10.1021/jacs.2c00483.
  • Castro-Muñoz, R.; Fíla, V.; Dung, C. T. Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status. Chem. Eng. Commun 2017, 204, 295–309. DOI: 10.1080/00986445.2016.1273832.
  • Ji, W.; Geng, H.; Chen, Z.; Dong, H.; Matsuyama, H.; Wang, H.; Wang, H.; Li, J.; Shi, W.; Ma, X. Facile Tailoring Molecular Sieving Effect of PIM-1 by in-Situ O3 Treatment for High Performance Hydrogen Separation. J. Membr. Sci 2022, 662, 120971. DOI: 10.1016/j.memsci.2022.120971.
  • Du, N.; Dal-Cin, M. M.; Robertson, G. P.; Guiver, M. D. Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation. Macromolecules 2012, 45, 5134–5139. DOI: 10.1021/ma300751s.
  • Chen, X.; Zhang, Z.; Wu, L.; Liu, X.; Xu, S.; Efome, J. E.; Zhang, X.; Li, N. Polymers of Intrinsic Microporosity Having Bulky Substitutes and Cross-Linking for Gas Separation Membranes. ACS Appl. Polym. Mater. 2020, 2, 987–995. DOI: 10.1021/acsapm.9b01193.
  • Li, F. Y.; Xiao, Y.; Chung, T.-S.; Kawi, S. High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development. Macromolecules 2012, 45, 1427–1437. DOI: 10.1021/ma202667y.
  • Malpass-Evans, R.; Rose, I.; Fuoco, A.; Bernardo, P.; Clarizia, G.; McKeown, N. B.; Jansen, J. C.; Carta, M. Effect of Bridgehead Methyl Substituents on the Gas Permeability of Tröger’s-Base Derived Polymers of Intrinsic Microporosity. Membranes 2020, 10, 62. DOI: 10.3390/membranes10040062.
  • Abdulhamid, M. A.; Ma, X.; Miao, X.; Pinnau, I. Synthesis and Characterization of a Microporous 6FDA-Polyimide Made from a Novel Carbocyclic Pseudo Tröger’s Base Diamine: Effect of Bicyclic Bridge on Gas Transport Properties. Polymer 2017, 130, 182–190. DOI: 10.1016/j.polymer.2017.10.017.
  • Cui, Y.; Liu, Y.; Liu, J.; Du, J.; Yu, Y.; Wang, S.; Liang, Z.; Yu, J. Multifunctional Porous Tröger’s Base Polymers with Tetraphenylethene Units: CO 2 Adsorption, Luminescence and Sensing Properties. Polym. Chem. 2017, 8, 4842–4848. DOI: 10.1039/C7PY00856B.
  • Thomas, S.; Pinnau, I.; Du, N.; Guiver, M. D. Pure- and Mixed-Gas Permeation Properties of a Microporous Spirobisindane-Based Ladder Polymer (PIM-1). J. Membr. Sci 2009, 333, 125–131. DOI: 10.1016/j.memsci.2009.02.003.
  • Bezzu, C. G.; Carta, M.; Ferrari, M.-C.; Jansen, J. C.; Monteleone, M.; Esposito, E.; Fuoco, A.; Hart, K.; Liyana-Arachchi, T. P.; Colina, C. M.; McKeown, N. B. The Synthesis, Chain-Packing Simulation and Long-Term Gas Permeability of Highly Selective Spirobifluorene-Based Polymers of Intrinsic Microporosity. J. Mater. Chem. A 2018, 6, 10507–10514. DOI: 10.1039/C8TA02601G.
  • Starannikova, L.; Belov, N.; Shantarovich, V.; Zhang, J.; Jin, J.; Yampolskii, Y. Effective Increase in Permeability and Free Volume of PIM Copolymers Containing Ethanoanthracene Unit and Comparison between the Alternating and Random Copolymers. J. Membr. Sci 2018, 548, 593–597. DOI: 10.1016/j.memsci.2017.11.049.
  • Hazazi, K.; Wang, Y.; Bettahalli, N. M. S.; Ma, X.; Xia, Y.; Pinnau, I. Catalytic Arene-Norbornene Annulation (CANAL) Ladder Polymer Derived Carbon Membranes with Unparalleled Hydrogen/Carbon Dioxide Size-Sieving Capability. J. Membr. Sci 2022, 654, 120548. DOI: 10.1016/j.memsci.2022.120548.
  • Fritsch, D.; Bengtson, G.; Carta, M.; McKeown, N. B. Synthesis and Gas Permeation Properties of Spirobischromane-Based Polymers of Intrinsic Microporosity. Macromol. Chem. Phys. 2011, 212, 1137–1146. DOI: 10.1002/macp.201100089.
  • Li, S.-L.; Zhu, Z.; Li, J.; Hu, Y.; Ma, X. Synthesis and Gas Separation Properties of OH-Functionalized Tröger’s Base-Based PIMs Derived from 1,1′-Binaphthalene-2,2′-OH. Polymer 2020, 193, 122369. DOI: 10.1016/j.polymer.2020.122369.
  • Wang, Z.; Wang, D.; Jin, J. Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation. Macromolecules 2014, 47, 7477–7483. DOI: 10.1021/ma5017506.
  • Weber, J.; Su, Q.; Antonietti, M.; Thomas, A. Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide. Macromol. Rapid Commun. 2007, 28, 1871–1876. DOI: 10.1002/marc.200700346.
  • Zhao, Y.-C.; Cheng, Q.-Y.; Zhou, D.; Wang, T.; Han, B.-H. Preparation and Characterization of Triptycene-Based Microporous Poly(Benzimidazole) Networks. J. Mater. Chem. 2012, 22, 11509–11514. DOI: 10.1039/c2jm31187a.
  • Abdulhamid, M. A.; Park, S.-H.; Vovusha, H.; Akhtar, F. H.; Ng, K. C.; Schwingenschlögl, U.; Szekely, G. Molecular Engineering of High-Performance Nanofiltration Membranes from Intrinsically Microporous Poly(Ether-Ether-Ketone). J. Mater. Chem. A 2020, 8, 24445–24454. DOI: 10.1039/D0TA08194A.
  • Kingston, H. J. Polymers of Intrinsic Microporosity: Synthesis and Catalytic Properties; The University of Manchester: United Kingdom, 2005.
  • Ghasemnejad-Afshar, E.; Amjad-Iranagh, S.; Zarif, M.; Modarress, H. Effect of Side Branch on Gas Separation Performance of Triptycene Based PIM Membrane: A Molecular Simulation Study. Polym. Test 2020, 83, 106339. DOI: 10.1016/j.polymertesting.2020.106339.
  • Hart, K. E.; Abbott, L. J.; McKeown, N. B.; Colina, C. M. Toward Effective CO2/CH4 Separations by Sulfur-Containing PIMs via Predictive Molecular Simulations. Macromolecules 2013, 46, 5371–5380. DOI: 10.1021/ma400334b.
  • Lee, W. H.; Seong, J. G.; Hu, X.; Lee, Y. M. Recent Progress in Microporous Polymers from Thermally Rearranged Polymers and Polymers of Intrinsic Microporosity for Membrane Gas Separation: Pushing Performance Limits and Revisiting Trade-off Lines. J. Polym. Sci. 2020, 58, 2450–2466. DOI: 10.1002/pol.20200110.
  • Satilmis, B. Electrospinning Polymers of Intrinsic Microporosity (PIMs) Ultrafine Fibers; Preparations, Applications and Future Perspectives. Curr. Opin. Chem. Eng 2022, 36, 100793. DOI: 10.1016/j.coche.2022.100793.
  • Zuo, P.; Zhou, J.; Yang, Z.; Xu, T. Hydrophilic Microporous Polymer Membranes: Synthesis and Applications. Chempluschem. 2020, 85, 1893–1904. DOI: 10.1002/cplu.202000486.
  • Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.; McKeown, N. B.; Fritsch, D. Gas Separation Membranes from Polymers of Intrinsic Microporosity. J. Membr. Sci. 2005, 251, 263–269. DOI: 10.1016/j.memsci.2005.01.009.
  • Han, X.; Chen, L.; Wang, Y.; Wang, T.; Cui, F.; Jiang, Z.; Pang, J. Novel Polymers with Ultrapermeability Based on Alternately Planar and Contorted Units for Gas Separation. ACS Mater. Lett. 2022, 4, 61–67. DOI: 10.1021/acsmaterialslett.1c00279.
  • Lasseuguette, E.; Ferrari, M.-C. Development of Microporous Electrospun PIM-1 Fibres. Mater. Lett. 2016, 177, 116–119. DOI: 10.1016/j.matlet.2016.04.181.
  • Satilmis, B.; Budd, P. M.; Uyar, T. Systematic Hydrolysis of PIM-1 and Electrospinning of Hydrolyzed PIM-1 Ultrafine Fibers for an Efficient Removal of Dye from Water. React. Funct. Polym 2017, 121, 67–75. DOI: 10.1016/j.reactfunctpolym.2017.10.019.
  • Satilmis, B.; Uyar, T. Removal of Aniline from Air and Water by Polymers of Intrinsic Microporosity (PIM-1) Electrospun Ultrafine Fibers. J. Colloid Interface Sci. 2018, 516, 317–324. DOI: 10.1016/j.jcis.2018.01.069.
  • McKeown, N. B.; Budd, P. M. Exploitation of Intrinsic Microporosity in Polymer-Based Materials. Macromolecules 2010, 43, 5163–5176. DOI: 10.1021/ma1006396.
  • Wang, Y.; Ghanem, B. S.; Ali, Z.; Hazazi, K.; Han, Y.; Pinnau, I. Recent Progress on Polymers of Intrinsic Microporosity and Thermally Modified Analogue Materials for Membrane-Based Fluid Separations. Small Struct 2021, 2, 2100049. DOI: 10.1002/sstr.202100049.
  • Satilmis, B.; Uyar, T. Amine Modified Electrospun PIM-1 Ultrafine Fibers for an Efficient Removal of Methyl Orange from an Aqueous System. Appl. Surf. Sci 2018, 453, 220–229. DOI: 10.1016/j.apsusc.2018.05.069.
  • Topuz, F.; Abdulhamid, M. A.; Szekely, G. Superoleophilic Oil-Adsorbing Membranes Based on Porous and Nonporous Fluorinated Polyimides for the Rapid Remediation of Oil Spills. Chem. Eng. J 2022, 449, 137821. DOI: 10.1016/j.cej.2022.137821.
  • Topuz, F.; Abdulhamid, M. A.; Hardian, R.; Holtzl, T.; Szekely, G. Nanofibrous Membranes Comprising Intrinsically Microporous Polyimides with Embedded Metal–Organic Frameworks for Capturing Volatile Organic Compounds. J. Hazard. Mater. 2022, 424, 127347. DOI: 10.1016/j.jhazmat.2021.127347.
  • Bonso, J. S.; Kalaw, G. D.; Ferraris, J. P. High Surface Area Carbon Nanofibers Derived from Electrospun PIM-1 for Energy Storage Applications. J. Mater. Chem. A 2014, 2, 418–424. DOI: 10.1039/C3TA13779A.
  • Patil, B.; Satilmis, B.; Uyar, T. Metal-Free N-Doped Ultrafine Carbon Fibers from Electrospun Polymers of Intrinsic Microporosity (PIM-1) Based Fibers for Oxygen Reduction Reaction. J. Power Sources 2020, 451, 227799. DOI: 10.1016/j.jpowsour.2020.227799.
  • Lasseuguette, E.; Malpass-Evans, R.; Tobin, J. M.; McKeown, N. B.; Ferrari, M.-C. Control over the Morphology of Electrospun Microfibrous Mats of a Polymer of Intrinsic Microporosity. Membranes 2021, 11, 422. DOI: 10.3390/membranes11060422.
  • Topuz, F.; Abdulhamid, M. A.; Holtzl, T.; Szekely, G. Nanofiber Engineering of Microporous Polyimides through Electrospinning: Influence of Electrospinning Parameters and Salt Addition. Mater. Des 2021, 198, 109280. DOI: 10.1016/j.matdes.2020.109280.
  • Topuz, F.; Satilmis, B.; Uyar, T. Electrospinning of Uniform Nanofibers of Polymers of Intrinsic Microporosity (PIM-1): The Influence of Solution Conductivity and Relative Humidity. Polymer 2019, 178, 121610. DOI: 10.1016/j.polymer.2019.121610.
  • Lu, M.; Wang, X.; Ren, H.; Wang, L.; Tang, Q.; Wang, H. Electrosprayed Hierarchically Porous Microparticles with Tunable Morphology for Selective Dye Adsorption. Mater. Chem. Phys 2023, 295, 127154. DOI: 10.1016/j.matchemphys.2022.127154.
  • Al-Hetlani, E.; Amin, M. O.; Antonangelo, A. R.; Zhou, H.; Carta, M. Triptycene and Triphenylbenzene-Based Polymers of Intrinsic Microporosity (PIMs) for the Removal of Pharmaceutical Residues from Wastewater. Microporous Mesoporous Mater. 2022, 330, 111602. DOI: 10.1016/j.micromeso.2021.111602.
  • Guo, H.; Li, H.; Jing, C.; Wang, X. Soluble Polymers with Intrinsic Porosity for Efficient Removal of Phenolic Compounds from Water. Microporous Mesoporous Mater. 2021, 319, 111068. DOI: 10.1016/j.micromeso.2021.111068.
  • Xu, J.; Ma, S.; Li, Y.; Li, X.; Ou, J.; Ye, M. Thiol-Functionalized PIM-1 for Removal and Sensing for Mercury (II). J. Environ. Chem. Eng 2020, 8, 104545. DOI: 10.1016/j.jece.2020.104545.
  • Al-Hetlani, E.; Amin, M. O.; Bezzu, C. G.; Carta, M. Spirobifluorene-Based Polymers of Intrinsic Microporosity for the Adsorption of Methylene Blue from Wastewater: Effect of Surfactants. R Soc. Open Sci. 2020, 7, 200741. DOI: 10.1098/rsos.200741.
  • Satilmis, B. Amidoxime Modified Polymers of Intrinsic Microporosity (PIM-1); a Versatile Adsorbent for Efficient Removal of Charged Dyes; Equilibrium, Kinetic and Thermodynamic Studies. J. Polym. Environ. 2020, 28, 995–1009. DOI: 10.1007/s10924-020-01664-4.
  • Fan, J.; Ling, Y.; Gao, C.; Lyu, H. A High Efficiency and Rapid Adsorbent for Removing Sunset Yellow Fcf by Amine-Modified Microporous Polymer. DWT. 2018, 124, 326–335. DOI: 10.5004/dwt.2018.22925.
  • Topuz, F.; Abdulhamid, M. A.; Nunes, S. P.; Szekely, G. Hierarchically Porous Electrospun Nanofibrous Mats Produced from Intrinsically Microporous Fluorinated Polyimide for the Removal of Oils and Non-Polar Solvents. Environ. Sci: Nano 2020, 7, 1365–1372. DOI: 10.1039/D0EN00084A.
  • Ranjith, K. S.; Satilmis, B.; Huh, Y. S.; Han, Y.-K.; Uyar, T. Highly Selective Surface Adsorption-Induced Efficient Photodegradation of Cationic Dyes on Hierarchical ZnO Nanorod-Decorated Hydrolyzed PIM-1 Nanofibrous Webs. J. Colloid Interface Sci. 2020, 562, 29–41. DOI: 10.1016/j.jcis.2019.11.096.
  • Satilmis, B.; Isık, T.; Demir, M. M.; Uyar, T. Amidoxime Functionalized Polymers of Intrinsic Microporosity (PIM-1) Electrospun Ultrafine Fibers for Rapid Removal of Uranyl Ions from Water. Appl. Surf. Sci 2019, 467-468, 648–657. DOI: 10.1016/j.apsusc.2018.10.210.
  • Pan, Y.; Zhang, L.; Li, Z.; Ma, L.; Zhang, Y.; Wang, J.; Meng, J. Hierarchical Porous Membrane via Electrospinning PIM-1 for Micropollutants Removal. Appl. Surf. Sci 2018, 443, 441–451. DOI: 10.1016/j.apsusc.2018.02.241.
  • Satilmis, B.; Uyar, T. Superhydrophobic Hexamethylene Diisocyanate Modified Hydrolyzed Polymers of Intrinsic Microporosity Electrospun Ultrafine Fibrous Membrane for the Adsorption of Organic Compounds and Oil/Water Separation. ACS Appl. Nano Mater. 2018, 1, 1631–1640. DOI: 10.1021/acsanm.8b00115.
  • Zhang, C.; Li, P.; Cao, B. Electrospun Polymer of Intrinsic Microporosity Fibers and Their Use in the Adsorption of Contaminants from a Nonaqueous System. J. Appl. Polym. Sci. 2016, 133, 43475. DOI: 10.1002/app.43475.
  • Zhang, C.; Li, P.; Cao, B. Electrospun Microfibrous Membranes Based on PIM-1/POSS with High Oil Wettability for Separation of Oil–Water Mixtures and Cleanup of Oil Soluble Contaminants. Ind. Eng. Chem. Res. 2015, 54, 8772–8781. DOI: 10.1021/acs.iecr.5b02321.
  • Ren, H.; Lu, M.; Tang, Q.; Yin, X.; Wang, L.; Wang, H. Facile Preparation of Fluorine-Free, Heat-Resisting, Breathable, and Waterproof Nanofibrous Membranes from Polymers of Intrinsic Microporosity. Macro. Materials & Eng. 2022, 307, 2100845. DOI: 10.1002/mame.202100845.
  • Jung, D.; Su, S.; Syed, Z. H.; Atilgan, A.; Wang, X.; Sha, F.; Lei, Y.; Gianneschi, N. C.; Islamoglu, T.; Farha, O. K. A Catalytically Accessible Polyoxometalate in a Porous Fiber for Degradation of a Mustard Gas Simulant. ACS Appl. Mater. Interfaces. 2022, 14, 16687–16693. DOI: 10.1021/acsami.2c01584.
  • Jung, D.; Kirlikovali, K. O.; Chen, Z.; Idrees, K. B.; Atilgan, A.; Cao, R.; Islamoglu, T.; Farha, O. K. An Amidoxime-Functionalized Porous Reactive Fiber against Toxic Chemicals. ACS Materials Lett. 2021, 3, 320–326. DOI: 10.1021/acsmaterialslett.0c00598.
  • Patil, B.; Satilmis, B.; Khalily, M. A.; Uyar, T. Atomic Layer Deposition of NiOOH/Ni(OH)2 on PIM-1-Based N-Doped Carbon Nanofibers for Electrochemical Water Splitting in Alkaline Medium. ChemSusChem 2019, 12, 1469–1477. DOI: 10.1002/cssc.201802500.
  • Satilmis, B.; Uyar, T. Development of Superhydrophobic Electrospun Fibrous Membrane of Polymers of Intrinsic Microporosity (PIM-2). Eur. Polym. J 2019, 112, 87–94. DOI: 10.1016/j.eurpolymj.2018.12.029.
  • Halder, K.; Bengtson, G.; Filiz, V.; Abetz, V. Catalytically Active (Pd) Nanoparticles Supported by Electrospun PIM-1: Influence of the Sorption Capacity of the Polymer Tested in the Reduction of Some Aromatic Nitro Compounds. Appl. Catal. Gen 2018, 555, 178–188. DOI: 10.1016/j.apcata.2018.02.004.
  • Topuz, F.; Oldal, D. G.; Szekely, G. Valorization of Polyethylene Terephthalate (PET) Plastic Wastes as Nanofibrous Membranes for Oil Removal: Sustainable Solution for Plastic Waste and Oil Pollution. Ind. Eng. Chem. Res. 2022, 61, 9077–9086. DOI: 10.1021/acs.iecr.2c01431.
  • Wang, Z.; Luo, X.; Song, Z.; Lu, K.; Zhu, S.; Yang, Y.; Zhang, Y.; Fang, W.; Jin, J. Microporous Polymer Adsorptive Membranes with High Processing Capacity for Molecular Separation. Nat. Commun. 2022, 13, 4169. DOI: 10.1038/s41467-022-31575-y.
  • Kuzminova, A.; Dmitrenko, M.; Zolotarev, A.; Korniak, A.; Poloneeva, D.; Selyutin, A.; Emeline, A.; Yushkin, A.; Foster, A.; Budd, P.; Ermakov, S. Novel Mixed Matrix Membranes Based on Polymer of Intrinsic Microporosity PIM-1 Modified with Metal-Organic Frameworks for Removal of Heavy Metal Ions and Food Dyes by Nanofiltration. Membranes 2021, 12, 14. DOI: 10.3390/membranes12010014.
  • Xu, S.; Jin, Y.; Li, R.; Shan, M.; Zhang, Y. Amidoxime Modified Polymers of Intrinsic Microporosity/Alginate Composite Hydrogel Beads for Efficient Adsorption of Cationic Dyes from Aqueous Solution. J. Colloid Interface Sci. 2022, 607, 890–899. DOI: 10.1016/j.jcis.2021.08.157.
  • Alammar, A.; Park, S.-H.; Ibrahim, I.; Arun, D.; Holtzl, T.; Dumée, L. F.; Lim, H. N.; Szekely, G. Architecting Neonicotinoid-Scavenging Nanocomposite Hydrogels for Environmental Remediation. Appl. Mater. Today 2020, 21, 100878. DOI: 10.1016/j.apmt.2020.100878.
  • Wang, Z.; Cui, F.; Pan, Y.; Hou, L.; Zhang, B.; Li, Y.; Zhu, L. Hierarchically Micro-Mesoporous β-Cyclodextrin Polymers Used for Ultrafast Removal of Micropollutants from Water. Carbohydr. Polym. 2019, 213, 352–360. DOI: 10.1016/j.carbpol.2019.03.021.
  • He, Y.; Li, H.; Zhou, L.; Xu, T.; Peng, C.; Liu, H., 1 东华理工大学化学生物与材料科学学院, 江西省聚合物微纳制造与器件重点实验室, 南昌 330013. Removal of Methyl Orange from Aqueous Solutions by a Novel Hyper-Cross-Linked Aromatic Triazine Porous Polymer. Wuli Huaxue Xuebao Acta Phys. - Chim. Sin 2019, 35, 299–306. DOI: 10.3866/PKU.WHXB201804172.
  • Abdulhamid, M. A.; Muzamil, K. Recent Progress on Electrospun Nanofibrous Polymer Membranes for Water and Air Purification: A Review. Chemosphere 2023, 310, 136886. DOI: 10.1016/j.chemosphere.2022.136886.
  • Jung, D.; Chen, Z.; Alayoglu, S.; Mian, M. R.; Goetjen, T. A.; Idrees, K. B.; Kirlikovali, K. O.; Islamoglu, T.; Farha, O. K. Postsynthetically Modified Polymers of Intrinsic Microporosity (PIMs) for Capturing Toxic Gases. ACS Appl. Mater. Interfaces. 2021, 13, 10409–10415. DOI: 10.1021/acsami.0c21741.
  • Wang, S.; Pomerantz, N. L.; Dai, Z.; Xie, W.; Anderson, E. E.; Miller, T.; Khan, S. A.; Parsons, G. N. Polymer of Intrinsic Microporosity (PIM) Based Fibrous Mat: Combining Particle Filtration and Rapid Catalytic Hydrolysis of Chemical Warfare Agent Simulants into a Highly Sorptive, Breathable, and Mechanically Robust Fiber Matrix. Mater. Today Adv. 2020, 8, 100085. DOI: 10.1016/j.mtadv.2020.100085.
  • Rodriguez, K. M. M.; Benedetti, F.; Roy, N. X.; Wu, A. P.; Smith, Z. Sorption-Enhanced Mixed-Gas Transport in Amine Functionalized Polymers of Intrinsic Microporosity (PIMs). J. Mater. Chem. A 2021, 9, 23631–23642. DOI: 10.1039/D1TA06530K.
  • Voon, B. K.; Shen Lau, H.; Liang, C. Z.; Yong, W. F. Functionalized Two-Dimensional g-C3N4 Nanosheets in PIM-1 Mixed Matrix Membranes for Gas Separation. Sep. Purif. Technol. 2022, 296, 121354. DOI: 10.1016/j.seppur.2022.121354.
  • Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. A Spirobifluorene-Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation. Adv. Mater. 2012, 24, 5930–5933. DOI: 10.1002/adma.201202393.
  • Xiong, S.; Pan, C.; Dai, G.; Liu, C.; Tan, Z.; Chen, C.; Yang, S.; Ruan, X.; Tang, J.; Yu, G. Interfacial Co-Weaving of AO-PIM-1 and ZIF-8 in Composite Membranes for Enhanced H2 Purification. J. Membr. Sci 2022, 645, 120217. DOI: 10.1016/j.memsci.2021.120217.
  • Kudo, Y.; Mikami, H.; Tanaka, M.; Isaji, T.; Odaka, K.; Yamato, M.; Kawakami, H. Mixed Matrix Membranes Comprising a Polymer of Intrinsic Microporosity Loaded with Surface-Modified Non-Porous Pearl-Necklace Nanoparticles. J. Membr. Sci 2020, 597, 117627. DOI: 10.1016/j.memsci.2019.117627.
  • Ren, Y.; Chong, B.; Xu, W.; Zhang, Z.; Liu, L.; Wu, Y.; Liu, Y.; Jiang, H.; Liang, X.; Wu, H.; et al. Coordination-Driven Structure Reconstruction in Polymer of Intrinsic Microporosity Membranes for Efficient Propylene/Propane Separation. Innovation (Camb) 2022, 3, 100334. DOI: 10.1016/j.xinn.2022.100334.
  • Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D. High-Performance Membranes from Polyimides with Intrinsic Microporosity. Adv. Mater. 2008, 20, 2766–2771. DOI: 10.1002/adma.200702400.
  • Rose, I.; Carta, M.; Malpass-Evans, R.; Ferrari, M.-C.; Bernardo, P.; Clarizia, G.; Jansen, J. C.; McKeown, N. B. Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. ACS Macro Lett. 2015, 4, 912–915. DOI: 10.1021/acsmacrolett.5b00439.
  • Rose, I.; Bezzu, C. G.; Carta, M.; Comesaña-Gándara, B.; Lasseuguette, E.; Ferrari, M. C.; Bernardo, P.; Clarizia, G.; Fuoco, A.; Jansen, J. C.; et al. Polymer Ultrapermeability from the Inefficient Packing of 2D Chains. Nat. Mater. 2017, 16, 932–937. DOI: 10.1038/nmat4939.
  • Zhou, H.; Rayer, C.; Antonangelo, A. R.; Hawkins, N.; Carta, M. Adjustable Functionalization of Hyper-Cross-Linked Polymers of Intrinsic Microporosity for Enhanced CO2 Adsorption and Selectivity over N2 and CH4. ACS Appl. Mater. Interfaces. 2022, 14, 20997–21006. DOI: 10.1021/acsami.2c02604.
  • Cai, Z.; Liu, Y.; Wang, C.; Xie, W.; Jiao, Y.; Shan, L.; Gao, P.; Wang, H.; Luo, S. Ladder Polymers of Intrinsic Microporosity from Superacid-Catalyzed Friedel-Crafts Polymerization for Membrane Gas Separation. J. Membr. Sci 2022, 644, 120115. DOI: 10.1016/j.memsci.2021.120115.
  • Yong, W. F.; Lee, Z. K.; Chung, T.-S.; Weber, M.; Staudt, C.; Maletzko, C. Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation. ChemSusChem 2016, 9, 1953–1962. DOI: 10.1002/cssc.201600354.
  • Swaidan, R.; Ghanem, B.; Pinnau, I. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations. ACS Macro Lett. 2015, 4, 947–951. DOI: 10.1021/acsmacrolett.5b00512.
  • Shi, G. M.; Feng, Y.; Li, B.; Tham, H. M.; Lai, J.-Y.; Chung, T.-S. Recent Progress of Organic Solvent Nanofiltration Membranes. Prog. Polym. Sci 2021, 123, 101470. DOI: 10.1016/j.progpolymsci.2021.101470.
  • Priske, M.; Lazar, M.; Schnitzer, C.; Baumgarten, G. Recent Applications of Organic Solvent Nanofiltration. Chem. Ing. Tech 2016, 88, 39–49. DOI: 10.1002/cite.201500084.
  • Abdulhamid, M. A.; Park, S.-H.; Zhou, Z.; Ladner, D. A.; Szekely, G. Surface Engineering of Intrinsically Microporous Poly(Ether-Ether-Ketone) Membranes: From Flat to Honeycomb Structures. J. Membr. Sci 2021, 621, 118997. DOI: 10.1016/j.memsci.2020.118997.
  • Li, J.; Feng, W.; Zhang, M.; Wang, X.; Fang, C.; Wang, J.; Zhang, L.; Zhu, L. Microporous Matrimid/PIM-1 Thin Film Composite Membranes with Narrow Pore Size Distribution Used for Molecular Separation in Organic Solvents. Macromol. Rapid Commun 2200, 44, 826.
  • Fritsch, D.; Merten, P.; Heinrich, K.; Lazar, M.; Priske, M. High Performance Organic Solvent Nanofiltration Membranes: Development and Thorough Testing of Thin Film Composite Membranes Made of Polymers of Intrinsic Microporosity (PIMs). J. Membr. Sci. 2012, 401–402, 222–231. DOI: 10.1016/j.memsci.2012.02.008.
  • Yushkin, A. A.; Anokhina, T. S.; Bazhenov, S. D.; Borisov, I. L.; Budd, P. M.; Volkov, A. V. Sorption and Nanofiltration Characteristics of PIM-1 Material in Polar and Non-Polar Solvents. Pet. Chem. 2018, 58, 1154–1158. DOI: 10.1134/S096554411813011X.
  • Gao, J.; Japip, S.; Chung, T.-S. Organic Solvent Resistant Membranes Made from a Cross-Linked Functionalized Polymer with Intrinsic Microporosity (PIM) Containing Thioamide Groups. Chem. Eng. J 2018, 353, 689–698. DOI: 10.1016/j.cej.2018.07.156.
  • Cook, M.; Gaffney, P. R. J.; Peeva, L. G.; Livingston, A. G. Roll-to-Roll Dip Coating of Three Different PIMs for Organic Solvent Nanofiltration. J. Membr. Sci. 2018, 558, 52–63. DOI: 10.1016/j.memsci.2018.04.046.
  • Gorgojo, P.; Karan, S.; Wong, H. C.; Jimenez-Solomon, M. F.; Cabral, J. T.; Livingston, A. G. Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes. Adv. Funct. Mater. 2014, 24, 4729–4737. DOI: 10.1002/adfm.201400400.
  • Anokhina, T. S.; Yushkin, A. A.; Budd, P. M.; Volkov, A. V. Application of PIM-1 for Solvent Swing Adsorption and Solvent Recovery by Nanofiltration. Sep. Purif. Technol 2015, 156, 683–690. DOI: 10.1016/j.seppur.2015.10.066.
  • Tsarkov, S.; Khotimskiy, V.; Budd, P. M.; Volkov, V.; Kukushkina, J.; Volkov, A. Solvent Nanofiltration through High Permeability Glassy Polymers: Effect of Polymer and Solute Nature. J. Membr. Sci 2012, 423–424, 65–72. DOI: 10.1016/j.memsci.2012.07.026.
  • Ye, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Polymer of Intrinsic Microporosity Coated on a Metal-Organic Framework Composite Membrane for Highly Efficient Dye Separation. J. Membr. Sci 2021, 637, 119619. DOI: 10.1016/j.memsci.2021.119619.
  • Shi, Q.; Zhang, K.; Lu, R.; Jiang, J. Water Desalination and Biofuel Dehydration through a Thin Membrane of Polymer of Intrinsic Microporosity: Atomistic Simulation Study. J. Membr. Sci 2018, 545, 49–56. DOI: 10.1016/j.memsci.2017.09.057.
  • Budd, P. M.; Elabas, E. S.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E.; Wang, D. Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Adv. Mater. 2004, 16, 456–459. DOI: 10.1002/adma.200306053.
  • Contreras-Martínez, J.; Mohsenpour, S.; Ameen, A. W.; Budd, P. M.; García-Payo, C.; Khayet, M.; Gorgojo, P. High-Flux Thin Film Composite PIM-1 Membranes for Butanol Recovery: Experimental Study and Process Simulations. ACS Appl. Mater. Interfaces. 2021, 13, 42635–42649. DOI: 10.1021/acsami.1c09112.
  • Adymkanov, S. V.; Yampol’skii, Y. P.; Polyakov, A. M.; Budd, P. M.; Reynolds, K. J.; McKeown, N. B.; Msayib, K. J. Pervaporation of Alcohols through Highly Permeable PIM-1 Polymer Films. Polym. Sci. Ser. A. 2008, 50, 444–450. DOI: 10.1134/S0965545X08040135.
  • Žák, M.; Klepic, M.; Štastná, L. Č.; Sedláková, Z.; Vychodilová, H.; Hovorka, Š.; Friess, K.; Randová, A.; Brožová, L.; Jansen, J. C.; et al. Selective Removal of Butanol from Aqueous Solution by Pervaporation with a PIM-1 Membrane and Membrane Aging. Sep. Purif. Technol. 2015, 151, 108–114. DOI: 10.1016/j.seppur.2015.07.041.
  • Lan, Y.; Peng, P.; Chen, P. Preparation of Polymers of Intrinsic Microporosity Composite Membranes Incorporated with Modified Nano-Fumed Silica for Butanol Separation. Adv. Polym. Technol. 2018, 37, 3297–3304. DOI: 10.1002/adv.22114.
  • Lan, Y.; Peng, P. Preparation of Polymer of Intrinsic Microporosity Composite Membranes and Their Applications for Butanol Recovery. J. Appl. Polym. Sci. 2019, 136, 46912. DOI: 10.1002/app.46912.
  • Salehian, P.; Yong, W. F.; Chung, T.-S. Development of High Performance Carboxylated PIM-1/P84 Blend Membranes for Pervaporation Dehydration of Isopropanol and CO2/CH4 Separation. J. Membr. Sci 2016, 518, 110–119. DOI: 10.1016/j.memsci.2016.06.027.
  • Wu, X. M.; Zhang, Q. G.; Soyekwo, F.; Liu, Q. L.; Zhu, A. M. Pervaporation Removal of Volatile Organic Compounds from Aqueous Solutions Using the Highly Permeable PIM-1 Membrane. AIChE J. 2016, 62, 842–851. DOI: 10.1002/aic.15077.
  • Wu, X. M.; Guo, H.; Soyekwo, F.; Zhang, Q. G.; Lin, C. X.; Liu, Q. L.; Zhu, A. M. Pervaporation Purification of Ethylene Glycol Using the Highly Permeable PIM-1 Membrane. J. Chem. Eng. Data 2016, 61, 579–586. DOI: 10.1021/acs.jced.5b00731.
  • Chen, M.; Wu, X.; Soyekwo, F.; Zhang, Q.; Lv, R.; Zhu, A.; Liu, Q. Toward Improved Hydrophilicity of Polymers of Intrinsic Microporosity for Pervaporation Dehydration of Ethylene Glycol. Sep. Purif. Technol 2017, 174, 166–173. DOI: 10.1016/j.seppur.2016.10.024.
  • Laidler, K. J. A Glossary of Terms Used in Chemical Kinetics, Including Reaction Dynamics (IUPAC Recommendations 1996). Pure Appl. Chem 1996, 68, 149–192. DOI: 10.1351/pac199668010149.
  • Liu, X.; Dai, L. Carbon-Based Metal-Free Catalysts. Nat. Rev. Mater. 2016, 1, 1–12. DOI: 10.1038/natrevmats.2016.64.
  • Crawford, C. J.; Qiao, Y.; Liu, Y.; Huang, D.; Yan, W.; Seeberger, P. H.; Oscarson, S.; Chen, S. Defining the Qualities of High-Quality Palladium on Carbon Catalysts for Hydrogenolysis. Org. Process Res. Dev. 2021, 25, 1573–1578. DOI: 10.1021/acs.oprd.0c00536.
  • Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.; et al. Metal-Organic and Covalent Organic Frameworks as Single-Site Catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184. DOI: 10.1039/c7cs00033b.
  • Zheng, W.; Yamada, S. A.; Hung, S. T.; Sun, W.; Zhao, L.; Fayer, M. D. Enhanced Menshutkin SN2 Reactivity in Mesoporous Silica: The Influence of Surface Catalysis and Confinement. J. Am. Chem. Soc. 2020, 142, 5636–5648. DOI: 10.1021/jacs.9b12666.
  • Altava, B.; Burguete, M. I.; García-Verdugo, E.; Luis, S. V. Chiral Catalysts Immobilized on Achiral Polymers: Effect of the Polymer Support on the Performance of the Catalyst. Chem. Soc. Rev. 2018, 47, 2722–2771. DOI: 10.1039/c7cs00734e.
  • Budd, P. M.; Ghanem, B.; Msayib, K.; McKeown, N. B.; Tattèrshall, C. A Nanoporous Network Polymer Derived from Hexaazatrinaphthylene with Potential as an Adsorbent and Catalyst Support. J. Mater. Chem. 2003, 13, 2721–2726. DOI: 10.1039/B303996J.
  • Cui, Y.; Du, J.; Liu, Y.; Yu, Y.; Wang, S.; Pang, H.; Liang, Z.; Yu, J. Design and Synthesis of a Multifunctional Porous N-Rich Polymer Containing: S -Triazine and Tröger’s Base for CO2 Adsorption, Catalysis and Sensing. Polym. Chem. 2018, 9, 2643–2649. DOI: 10.1039/C8PY00177D.
  • Lu, X.; Jiang, Z.; Yuan, X.; Wu, Y.; Malpass-Evans, R.; Zhong, Y.; Liang, Y.; McKeown, N. B.; Wang, H. A Bio-Inspired O2-Tolerant Catalytic CO2 Reduction Electrode. Sci Bull (Beijing) 2019, 64, 1890–1895. DOI: 10.1016/j.scib.2019.04.008.
  • Novitskii, E. G.; Bazhenov, S. D.; Volkov, A. V. Optimization of Methods for Purification of Gas Mixtures to Remove Carbon Dioxide (a Review). Pet. Chem. 2021, 61, 407–423. DOI: 10.1134/S096554412105011X.
  • Perry, S. C.; Gateman, S. M.; Malpass-Evans, R.; McKeown, N.; Wegener, M.; Nazarovs, P.; Mauzeroll, J.; Wang, L.; Ponce de León, C. Polymers with Intrinsic Microporosity (PIMs) for Targeted CO2 Reduction to Ethylene. Chemosphere 2020, 248, 125993. DOI: 10.1016/j.chemosphere.2020.125993.
  • Rat, S.; Chavez-Sanchez, A.; Jerigová, M.; Cruz, D.; Antonietti, M. Acetic Anhydride Polymerization as a Pathway to Functional Porous Organic Polymers and Their Application in Acid-Base Catalysis. ACS Appl. Polym. Mater. 2021, 3, 2588–2597. DOI: 10.1021/acsapm.1c00202.
  • Maya, E. M.; Rangel-Rangel, E.; Díaz, U.; Iglesias, M. Efficient Cycloaddition of CO2 to Epoxides Using Novel Heterogeneous Organocatalysts Based on Tetramethylguanidine-Functionalized Porous Polyphenylenes. J. CO2 Util 2018, 25, 170–179. DOI: 10.1016/j.jcou.2018.04.001.
  • Pan, Y.; Zhai, X.; Yin, J.; Zhang, T.; Ma, L.; Zhou, Y.; Zhang, Y.; Meng, J. Hierarchical Porous and Zinc-Ion-Crosslinked PIM-1 Nanocomposite as a CO2 Cycloaddition Catalyst with High Efficiency. ChemSusChem 2019, 12, 2231–2239. DOI: 10.1002/cssc.201803066.
  • Valange, S.; Védrine, J. C. General and Prospective Views on Oxidation Reactions in Heterogeneous Catalysis. Catalysts 2018, 8, 483. DOI: 10.3390/catal8100483.
  • Sheldon, R. A.; Downing, R. S. Heterogeneous Catalytic Transformations for Environmentally Friendly Production. Appl. Catal. Gen 1999, 189, 163–183. DOI: 10.1016/S0926-860X(99)00274-4.
  • MacKintosh, H. J.; Budd, P. M.; McKeown, N. B. Catalysis by Microporous Phthalocyanine and Porphyrin Network Polymers. J. Mater. Chem. 2008, 18, 573–578. DOI: 10.1039/B715660J.
  • McKeown, N. B.; Hanif, S.; Msayib, K.; Tattershall, C. E.; Budd, P. M. Porphyrin-Based Nanoporous Network Polymers. Chem. Commun. 2002, 2, 2782–2783. DOI: 10.1039/b208702m.
  • Antonangelo, A. R.; Grazia Bezzu, C.; Mughal, S. S.; Malewschik, T.; McKeown, N. B.; Nakagaki, S. A Porphyrin-Based Microporous Network Polymer That Acts as an Efficient Catalyst for Cyclooctene and Cyclohexane Oxidation under Mild Conditions. Catal. Commun 2017, 99, 100–104. DOI: 10.1016/j.catcom.2017.05.024.
  • Antonangelo, A. R.; Grazia Bezzu, C.; McKeown, N. B.; Nakagaki, S. Highly Active Manganese Porphyrin-Based Microporous Network Polymers for Selective Oxidation Reactions. J. Catal 2019, 369, 133–142. DOI: 10.1016/j.jcat.2018.10.036.
  • Wenderich, K.; Mul, G. Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem. Rev. 2016, 116, 14587–14619. DOI: 10.1021/acs.chemrev.6b00327.
  • Koe, W. S.; Lee, J. W.; Chong, W. C.; Pang, Y. L.; Sim, L. C. An Overview of Photocatalytic Degradation: Photocatalysts, Mechanisms, and Development of Photocatalytic Membrane. Environ. Sci. Pollut. Res. Int. 2020, 27, 2522–2565. DOI: 10.1007/s11356-019-07193-5.
  • Tang, Q.; Gong, J.; Zhao, Q. Efficient Organic Pollutant Degradation under Visible-Light Using Functional Polymers of Intrinsic Microporosity. Catal. Sci. Technol. 2019, 9, 5383–5393. DOI: 10.1039/C9CY01338E.
  • Xu, H.; Li, X.; Hao, H.; Dong, X.; Sheng, W.; Lang, X. Designing Fluorene-Based Conjugated Microporous Polymers for Blue Light-Driven Photocatalytic Selective Oxidation of Amines with Oxygen. Appl. Catal. B Environ 2021, 285, 119796.
  • Li, S.; Zhang, W.; Yang, S.; Chen, F.; Pan, C.; Tang, J.; Zhang, K. A. I.; Yu, G. Phenothiazine-Based Conjugated Microporous Polymers: Pore Surface and Bandgap Engineering for Visible Light-Driven Aerobic Oxidative Cyanation. Chem. Eng. J. 2021, 408, 127261.
  • Marken, F.; Madrid, E.; Zhao, Y.; Carta, M.; McKeown, N. B. Polymers of Intrinsic Microporosity in Triphasic Electrochemistry: Perspectives. ChemElectroChem. 2019, 6, 4332–4342. DOI: 10.1002/celc.201900717.
  • Li, J.; Chen, G.; Zhu, Y.; Liang, Z.; Pei, A.; Wu, C. L.; Wang, H.; Lee, H. R.; Liu, K.; Chu, S.; Cui, Y. Efficient Electrocatalytic CO2 Reduction on a Three-Phase Interface. Nat. Catal. 2018, 1, 592–600. DOI: 10.1038/s41929-018-0108-3.
  • Xia, F.; Pan, M.; Mu, S.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Attard, G. A.; Brew, A.; Morgan, D. J.; Marken, F. Polymers of Intrinsic Microporosity in Electrocatalysis: Novel Pore Rigidity Effects and Lamella Palladium Growth. Electrochim. Acta 2014, 128, 3–9. DOI: 10.1016/j.electacta.2013.08.169.
  • Chae, I. S.; Luo, T.; Moon, G. H.; Ogieglo, W.; Kang, Y. S.; Wessling, M. Ultra-High Proton/Vanadium Selectivity for Hydrophobic Polymer Membranes with Intrinsic Nanopores for Redox Flow Battery. Adv. Energy Mater. 2016, 6, 1600517. DOI: 10.1002/aenm.201600517.
  • Doris, S. E.; Ward, A. L.; Baskin, A.; Frischmann, P. D.; Gavvalapalli, N.; Chénard, E.; Sevov, C. S.; Prendergast, D.; Moore, J. S.; Helms, B. A. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. Angew. Chem. 2017, 129, 1617–1621. DOI: 10.1002/ange.201610582.
  • Doris, S. E.; Ward, A. L.; Frischmann, P. D.; Li, L.; Helms, B. A. Understanding and Controlling the Chemical Evolution and Polysulfide-Blocking Ability of Lithium-Sulfur Battery Membranes Cast from Polymers of Intrinsic Microporosity. J. Mater. Chem. A 2016, 4, 16946–16952. DOI: 10.1039/C6TA06401A.
  • Li, C.; Ward, A. L.; Doris, S. E.; Pascal, T. A.; Prendergast, D.; Helms, B. A. Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries. Nano Lett. 2015, 15, 5724–5729. DOI: 10.1021/acs.nanolett.5b02078.
  • Ward, A. L.; Dori, S. E.; Li, L.; Hughes, M. A.; Qu, X.; Persson, K. A.; Helms, B. A. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries. ACS Cent. Sci. 2017, 3, 399–406. DOI: 10.1021/acscentsci.7b00012.
  • Rong, Y.; Song, Q.; Mathwig, K.; Madrid, E.; He, D.; Niemann, R. G.; Cameron, P. J.; Dale, S. E. C.; Bending, S.; Carta, M.; et al. PH-Induced Reversal of Ionic Diode Polarity in 300 Nm Thin Membranes Based on a Polymer of Intrinsic Microporosity. Electrochem. Commun. 2016, 69, 41–45. DOI: 10.1016/j.elecom.2016.05.019.
  • Madrid, E.; He, D.; Yang, J.; Hogan, C. F.; Stringer, B.; Msayib, K. J.; McKeown, N. B.; Raithby, P. R.; Marken, F. Reagentless Electrochemiluminescence from a Nanoparticulate Polymer of Intrinsic Microporosity (PIM-1) Immobilized onto Tin-Doped Indium Oxide. ChemElectroChem 2016, 3, 2160–2164. DOI: 10.1002/celc.201600419.
  • Rong, Y.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Attard, G. A.; Marken, F. High Density Heterogenisation of Molecular Electrocatalysts in a Rigid Intrinsically Microporous Polymer Host. Electrochem. Commun. 2014, 46, 26–29. DOI: 10.1016/j.elecom.2014.06.005.
  • Ahn, S. D.; Kolodziej, A.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Bull, S. D.; Buchard, A.; Marken, F. Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations. Electrocatalysis 2016, 7, 70–78. DOI: 10.1007/s12678-015-0284-8.
  • Rong, Y.; Malpass-Evans, R.; Carta, M.; Mckeown, N. B.; Attard, G. A.; Marken, F. Intrinsically Porous Polymer Protects Catalytic Gold Particles for Enzymeless Glucose Oxidation. Electroanalysis 2014, 26, 904–909. DOI: 10.1002/elan.201400085.
  • He, D.; Rauwel, E.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Gorle, D. B.; Anbu Kulandainathan, M.; Marken, F. Redox Reactivity at Silver Microparticle—Glassy Carbon Contacts under a Coating of Polymer of Intrinsic Microporosity (PIM). J. Solid State Electrochem. 2017, 21, 2141–2146. DOI: 10.1007/s10008-017-3534-2.
  • Rong, Y.; He, D.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Gromboni, M. F.; Mascaro, L. H.; Nelson, G. W.; Foord, J. S.; Holdway, P.; et al. High-Utilisation Nanoplatinum Catalyst (Pt@cPIM) Obtained via Vacuum Carbonisation in a Molecularly Rigid Polymer of Intrinsic Microporosity. Electrocatalysis 2017, 8, 132–143. DOI: 10.1007/s12678-016-0347-5.
  • Leong, S. X.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Madrid, E.; Marken, F. One-step Preparation of Microporous Pd@cPIM Composite Catalyst Film for Triphasic Electrocatalysis. Electrochem. commun. 2018, 86, 17–20. DOI: 10.1016/j.elecom.2017.11.007.
  • Hobson, S. T.; Cemalovic, S.; Patel, S. V. Preconcentration and Detection of Chlorinated Organic Compounds and Benzene. Analyst 2012, 137, 1284–1289. DOI: 10.1039/c2an16053f.
  • Rakow, N. A.; Wendland, M. S.; Trend, J. E.; Poirier, R. J.; Paolucci, D. M.; Maki, S. P.; Lyons, C. S.; Swierczek, M. J. Visual Indicator for Trace Organic Volatiles. Langmuir 2010, 26, 3767–3770. DOI: 10.1021/la903483q.
  • Rong, Y.; Large, M. J.; Tripathi, M.; Ogilvie, S. P.; Amorim Graf, A.; Mao, B.; Tunesi, J.; Salvage, J. P.; King, A. A. K.; Pasquazi, A.; et al. Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. ACS Appl. Mater. Interfaces. 2019, 11, 31191–31199. DOI: 10.1021/acsami.9b09832.
  • Wang, Y.; McKeown, N. B.; Msayib, K. J.; Turnbull, G. A.; Samuel, I. D. W. Laser Chemosensor with Rapid Responsivity and Inherent Memory Based on a Polymer of Intrinsic Microporosity. Sensors (Basel) 2011, 11, 2478–2487. DOI: 10.3390/s110302478.
  • Bryant, M.; Skelton, J.; Hatcher, L.; et al.. A Rapidly-Reversible Absorptive and Emissive Vapochromic Pt (II) Pincer-Based Chemical Sensor. Nat. Commun. 2017, 8, 1800. DOI: 10.1038/s41467-017-01941-2.
  • Polak-Kraśna, K.; Tian, M.; Rochat, S.; Gathercole, N.; Yuan, C.; Hao, Z.; Pan, M.; Burrows, A. D.; Mays, T. J.; Bowen, C. R. Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporosity. ACS Appl. Polym. Mater. 2021, 3, 920–928. DOI: 10.1021/acsapm.0c01215.
  • Wang, X.; Yu, C.; Guo, H.; Cheng, Y.; Li, Y.; Zheng, D.; Feng, S.; Lin, Y. Robust Fluorescent Detection of Iodine Vapor by a Film Sensor Based on a Polymer of Intrinsic Microporosity. Chem. Eng. J 2022, 438, 135641. DOI: 10.1016/j.cej.2022.135641.
  • Zhou, W.; Yu, C.; Wang, X. Fast and Quantitative Electrical Detection of Iodine Based on a Polymer of Intrinsic Microporosity. ACS Appl. Polym. Mater. 2022, 4, 9151–9159. DOI: 10.1021/acsapm.2c01479.
  • Li, Z.; Wang, L.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Mathwig, K.; Fletcher, P. J.; Marken, F. Ionic Diode and Molecular Pump Phenomena Associated with Caffeic Acid Accumulated into an Intrinsically Microporous Polyamine (PIM-EA-TB). ChemElectroChem 2021, 8, 2044–2051. DOI: 10.1002/celc.202100432.
  • Jahani, N.; Amiri, M.; Ghiasi, M.; Imanzadeh, H.; Boukherroub, R.; Szunerits, S.; Marken, F.; McKeown, N. B. Non-Enzymatic Electrochemical Cholesterol Sensor Based on Strong Host-Guest Interactions with a Polymer of Intrinsic Microporosity (PIM) with DFT Study. Anal. Bioanal. Chem. 2021, 413, 6523–6533. DOI: 10.1007/s00216-021-03616-w.
  • Wang, L.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Marken, F. The Immobilisation and Reactivity of Fe(CN)63−/4− in an Intrinsically Microporous Polyamine (PIM-EA-TB). J. Solid State Electrochem. 2020, 24, 2797–2806. DOI: 10.1007/s10008-020-04603-4.
  • Wang, L.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Reeksting, S. B.; Marken, F. Catechin or Quercetin Guests in an Intrinsically Microporous Polyamine (PIM-EA-TB) Host: Accumulation, Reactivity, and Release. RSC Adv. 2021, 11, 27432–27442. DOI: 10.1039/d1ra04543a.
  • Putra, B. R.; Aaronson, B. D. B.; Madrid, E.; Mathwig, K.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Marken, F. Ionic Diode Characteristics at a Polymer of Intrinsic Microporosity (PIM) | Nafion “Heterojunction” Deposit on a Microhole Poly(Ethylene-Terephthalate) Substrate. Electroanalysis 2017, 29, 2217–2223. DOI: 10.1002/elan.201700247.
  • Riza Putra, B.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Marken, F. Potassium Cation Induced Ionic Diode Blocking for a Polymer of Intrinsic Microporosity | Nafion “Heterojunction” on a Microhole Substrate. Electrochimica Acta 2017, 258, 807–813. DOI: 10.1016/j.electacta.2017.11.130.
  • Afshary, H.; Amiri, M.; Marken, F.; McKeown, N. B.; Amiri, M. ECL Sensor for Selective Determination of Citrate Ions as a Prostate Cancer Biomarker Using Polymer of Intrinsic Microporosity-1 Nanoparticles/Nitrogen-Doped Carbon Quantum Dots. Anal. Bioanal. Chem. 2023, 415, 2727–2736. DOI: 10.1007/s00216-023-04672-0.
  • Bhalla, A. S.; Guo, R.; Roy, R. The Perovskite Structure—a Review of Its Role in Ceramic Science and Technology. Mater. Res. Innov 2000, 4, 3–26. DOI: 10.1007/s100190000062.
  • Yang, H.; Gutiérrez-Arzaluz, L.; Maity, P.; Abdulhamid, M. A.; Yin, J.; Zhou, Y.; Chen, C.; Han, Y.; Szekely, G.; Bakr, O. M.; Mohammed, O. F. Air-Resistant Lead Halide Perovskite Nanocrystals Embedded into Polyimide of Intrinsic Microporosity. Energy Mater. Adv 2021, 2021, 9873846.
  • Du, X.; Yuan, Y.; Dong, T.; Chi, X.; Wang, Z. Polymer Electrolyte Membranes from Microporous Troger’s Base Polymers for Fuel Cells. ACS Appl. Energy Mater. 2021, 4, 13327–13334. DOI: 10.1021/acsaem.1c03025.
  • Skupov, K. M.; Vtyurina, E. S.; Ponomarev, I. I.; Ponomarev, I. I.; Aysin, R. R. Prospective Carbon Nanofibers Based on Polymer of Intrinsic Microporosity (PIM-1): Pore Structure Regulation for Higher Carbon Sequestration and Renewable Energy Source Applications. Polymer 2023, 264, 125546. DOI: 10.1016/j.polymer.2022.125546.
  • Gong, S.; Bai, L.; Li, L.; Qaisrani, N. A.; Ma, L.; He, G.; Zhang, F. Block Copolymer Anion Exchange Membrane Containing Polymer of Intrinsic Microporosity for Fuel Cell Application. Int. J. Hydrog. Energy 2021, 46, 2269–2281. DOI: 10.1016/j.ijhydene.2020.10.068.
  • Gong, S.; Li, L.; Ma, L.; Qaisrani, N. A.; Liu, J.; He, G.; Zhang, F. Blend Anion Exchange Membranes Containing Polymer of Intrinsic Microporosity for Fuel Cell Application. J. Membr. Sci. 2020, 595, 117541. DOI: 10.1016/j.memsci.2019.117541.
  • He, D.; Rong, Y.; Carta, M.; Malpass-Evans, R.; McKeown, N. B.; Marken, F. Fuel Cell Anode Catalyst Performance Can Be Stabilized with a Molecularly Rigid Film of Polymers of Intrinsic Microporosity (PIM). RSC Adv. 2016, 6, 9315–9319. DOI: 10.1039/C5RA25320A.
  • Huang, T.; Qiu, X.; Zhang, J.; Li, X.; Pei, Y.; Jiang, H.; Yue, R.; Yin, Y.; Jiang, Z.; Zhang, X.; Guiver, M. D. Hydrogen Crossover through Microporous Anion Exchange Membranes for Fuel Cells. J. Power Sources 2022, 527, 231143. DOI: 10.1016/j.jpowsour.2022.231143.
  • Ponomarev, I. I.; Skupov, K. M.; Ponomarev, I. I.; Razorenov, D. Y.; Volkova, Y. A.; Basu, V. G.; Zhigalina, O. M.; Bukalov, S. S.; Volfkovich, Y. M.; Sosenkin, V. E. New Gas-Diffusion Electrode Based on Heterocyclic Microporous Polymer PIM-1 for High-Temperature Polymer Electrolyte Membrane Fuel Cell. Russ. J. Electrochem. 2019, 55, 552–557. DOI: 10.1134/S1023193519060156.
  • Kim, B. G.; Henkensmeier, D.; Kim, H.-J.; Jang, J. H.; Nam, S. W.; Lim, T.-H. Sulfonation of PIM-1—towards Highly Oxygen Permeable Binders for Fuel Cell Application. Macromol. Res. 2014, 22, 92–98. DOI: 10.1007/s13233-014-2007-z.
  • Yu, M.; Foster, A. B.; Scholes, C. A.; Kentish, S. E.; Budd, P. M. Methanol Vapor Retards Aging of PIM-1 Thin Film Composite Membranes in Storage. ACS Macro Lett. 2023, 12, 113–117. DOI: 10.1021/acsmacrolett.2c00568.
  • Lai, H. W. H.; Benedetti, F. M.; Ahn, J. M.; Robinson, A. M.; Wang, Y.; Pinnau, I.; Smith, Z. P.; Xia, Y. Hydrocarbon Ladder Polymers with Ultrahigh Permselectivity for Membrane Gas Separations. Science 2022, 375, 1390–1392. DOI: 10.1126/science.abl7163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.