254
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A Review on Drug Delivery Systems Containing Polymer Nanocomposites for Breast Cancer Treatment

, &
Pages 490-527 | Received 10 Dec 2022, Accepted 17 Sep 2023, Published online: 05 Oct 2023

References

  • Ghosh, B.; Biswas, S. Polymeric Micelles in Cancer Therapy: State of the Art. J. Control. Release 2021, 332, 127–147. DOI: 10.1016/j.jconrel.2021.02.016.
  • Kazemi, F.; Naghib, S. M.; Zare, Y.; Rhee, K. Y. Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites: A Review. Polym. Rev. 2021, 61, 553–597. DOI: 10.1080/15583724.2020.1858871.
  • Wang, W.; Fan, X.; Xu, S.; Davis, J. J.; Luo, X. Low Fouling Label-Free DNA Sensor Based on Polyethylene Glycols Decorated with Gold Nanoparticles for the Detection of Breast Cancer Biomarkers. Biosens. Bioelectron. 2015, 71, 51–56. DOI: 10.1016/j.bios.2015.04.018.
  • Mohammadpour-Haratbar, A.; Zare, Y.; Rhee, K. Y. Electrochemical Biosensors Based on Polymer Nanocomposites for Detecting Breast Cancer: Recent Progress and Future Prospects. Adv. Colloid Interface Sci. 2022, 309, 102795. DOI: 10.1016/j.cis.2022.102795.
  • World Health Organization and International Agency for Research on Cancer. Estimated Number of New Cases in 2020, Worldwide, Females, All Ages. https://drmahavirtadaiya.in/wp-content/uploads/2021/03/Womens-cancer-2020.png.
  • Rahimzadeh, Z.; Naghib, S. M.; Askari, E.; Molaabasi, F.; Sadr, A.; Zare, Y.; Afsharpad, M.; Rhee, K. Y. A Rapid Nanobiosensing Platform Based on Herceptin-Conjugated Graphene for Ultrasensitive Detection of Circulating Tumor Cells in Early Breast Cancer. Nanotechnol. Rev. 2021, 10, 744–753. DOI: 10.1515/ntrev-2021-0049.
  • Feldman, D. Polymers and Polymer Nanocomposites for Cancer Therapy. Appl. Sci. 2019, 9, 3899. DOI: 10.3390/app9183899.
  • Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. DOI: 10.3390/molecules26195905.
  • Hardenia, A.; Maheshwari, N.; Hardenia, S. S.; Dwivedi, S. K.; Maheshwari, R.; Tekade, R. K. Scientific Rationale for Designing Controlled Drug Delivery Systems. In Basic Fundamentals of Drug Delivery, Tekade, R. K., Ed.; In Advances in Pharmaceutical Product Development and Research, 2019; pp 1–28.
  • Chen, Y.; Chen, H.; Shi, J. Inorganic Nanoparticle-Based Drug Codelivery Nanosystems to Overcome the Multidrug Resistance of Cancer Cells. Mol. Pharm. 2014, 11, 2495–2510. DOI: 10.1021/mp400596v.
  • Mousazadeh, H.; Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Zarghami, N. Cyclodextrin Based Natural Nanostructured Carbohydrate Polymers as Effective Non-Viral SiRNA Delivery Systems for Cancer Gene Therapy. J. Control. Release 2021, 330, 1046–1070. DOI: 10.1016/j.jconrel.2020.11.011.
  • Gooneh-Farahani, S.; Naimi-Jamal, M. R.; Naghib, S. M. Stimuli-Responsive Graphene-Incorporated Multifunctional Chitosan for Drug Delivery Applications: A Review. Expert Opin. Drug Deliv. 2019, 16, 79–99. DOI: 10.1080/17425247.2019.1556257.
  • L Bruschi, M. Development of Drug Delivery Systems and Quality by Design. Recent Pat. Drug Deliv. Formul. 2015, 9, 105–105. DOI: 10.2174/1872211309666150424125109.
  • Sun, L.; Gao, X.; Wu, D.; Guo, Q. Advances in Physiologically Relevant Actuation of Shape Memory Polymers for Biomedical Applications. Polym. Rev. 2021, 61, 280–318. DOI: 10.1080/15583724.2020.1825487.
  • Di Lorenzo, M. L. Poly (l-Lactic Acid)/Poly (Butylene Succinate) Biobased Biodegradable Blends. Polym. Rev. 2021, 61, 457–492. DOI: 10.1080/15583724.2020.1850475.
  • Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. J. Control. Release 2021, 332, 312–336. DOI: 10.1016/j.jconrel.2021.02.031.
  • Huh, K. M.; Kang, H. C.; Lee, Y. J.; Bae, Y. H. PH-Sensitive Polymers for Drug Delivery. Macromol. Res. 2012, 20, 224–233. DOI: 10.1007/s13233-012-0059-5.
  • Schoeller, J.; Itel, F.; Wuertz-Kozak, K.; Fortunato, G.; Rossi, R. M. PH-Responsive Electrospun Nanofibers and Their Applications. Polym. Rev. 2022, 62, 351–399. DOI: 10.1080/15583724.2021.1939372.
  • Zhang, Y.-Q.; Shen, Y.; Liao, M.-M.; Mao, X.; Mi, G.-J.; You, C.; Guo, Q.-Y.; Li, W.-J.; Wang, X.-Y.; Lin, N.; Webster, T. J. Galactosylated Chitosan Triptolide Nanoparticles for Overcoming Hepatocellular Carcinoma: Enhanced Therapeutic Efficacy, Low Toxicity, and Validated Network Regulatory Mechanisms. Nanomedicine 2019, 15, 86–97. DOI: 10.1016/j.nano.2018.09.002.
  • Shariatinia, Z.; Mohammadi-Denyani, A. Advances in Polymers for Drug Delivery and Wound Healing Applications. In Advances in Polymers for Biomedical Applications, Pathania, D.; Gupta, B., Eds.; Nova Science Publishers, Incorporated; 2018, pp 85–141.
  • Zare, Y. Evaluation of Nanoparticle Dispersion and Its Influence on the Tensile Modulus of Polymer Nanocomposites by a Modeling Method. Colloid Polym. Sci. 2017, 295, 363–369. DOI: 10.1007/s00396-017-4016-x.
  • Brooke, R.; Lay, M.; Jain, K.; Francon, H.; Say, M. G.; Belaineh, D.; Wang, X.; Håkansson, K. M. O.; Wågberg, L.; Engquist, I.; et al. Nanocellulose and PEDOT: PSS Composites and Their Applications. Polym. Rev. 2023, 63, 437–477. DOI: 10.1080/15583724.2022.2106491.
  • Yang, F.; Lu, J.; Ke, Q.; Peng, X.; Guo, Y.; Xie, X. Magnetic Mesoporous Calcium Sillicate/Chitosan Porous Scaffolds for Enhanced Bone Regeneration and Photothermal-Chemotherapy of Osteosarcoma. Sci. Rep. 2018, 8, 7345. DOI: 10.1038/s41598-018-25595-2.
  • Rastegari, A.; Mottaghitalab, F.; Dinarvand, R.; Amini, M.; Arefian, E.; Gholami, M.; Atyabi, F. Inhibiting Hepatic Gluconeogenesis by Chitosan Lactate Nanoparticles Containing CRTC2 SiRNA Targeted by Poly (Ethylene Glycol)-Glycyrrhetinic Acid. Drug Deliv. Transl. Res. 2019, 9, 694–706. DOI: 10.1007/s13346-019-00618-1.
  • Gaihre, B.; Liu, X.; Lee Miller, A.; Yaszemski, M.; Lu, L. Poly (Caprolactone Fumarate) and Oligo [Poly (Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. Polym. Rev. 2021, 61, 319–356. DOI: 10.1080/15583724.2020.1758718.
  • Kopf, S.; Åkesson, D.; Skrifvars, M. Textile Fiber Production of Biopolymers–a Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications. Polym. Rev. 2023, 63, 200–245. DOI: 10.1080/15583724.2022.2076693.
  • Mariadoss, A. V. A.; Saravanakumar, K.; Sathiyaseelan, A.; Venkatachalam, K.; Wang, M.-H. Folic Acid Functionalized Starch Encapsulated Green Synthesized Copper Oxide Nanoparticles for Targeted Drug Delivery in Breast Cancer Therapy. Int. J. Biol. Macromol. 2020, 164, 2073–2084. DOI: 10.1016/j.ijbiomac.2020.08.036.
  • Hira, I.; Kumar, A.; Kumari, R.; Saini, A. K.; Saini, R. V. Pectin-Guar Gum-Zinc Oxide Nanocomposite Enhances Human Lymphocytes Cytotoxicity towards Lung and Breast Carcinomas. Mater. Sci. Eng. : C 2018, 90, 494–503. DOI: 10.1016/j.msec.2018.04.085.
  • Zhao, L.; Chai, M.-H.; Yao, H.-F.; Huang, Y.-P.; Liu, Z.-S. Molecularly Imprinted Polymers Doped with Carbon Nanotube with Aid of Metal-Organic Gel for Drug Delivery Systems. Pharm. Res. 2020, 37, 193. DOI: 10.1007/s11095-020-02902-z.
  • Xu, D.; Li, E.; Karmakar, B.; Awwad, N. S.; Ibrahium, H. A.; Osman, H.-E. H.; El-Kott, A. F.; Abdel-Daim, M. M. Green Preparation of Copper Nanoparticle-Loaded Chitosan/Alginate Bio-Composite: Investigation of Its Cytotoxicity, Antioxidant and anti-Human Breast Cancer Properties. Arabian J. Chem. 2022, 15, 103638. DOI: 10.1016/j.arabjc.2021.103638.
  • Solairaj, D.; Rameshthangam, P.; Arunachalam, G. Anticancer Activity of Silver and Copper Embedded Chitin Nanocomposites against Human Breast Cancer (MCF-7) Cells. Int. J. Biol. Macromol. 2017, 105, 608–619. DOI: 10.1016/j.ijbiomac.2017.07.078.
  • Yu, E.; Lo, A.; Jiang, L.; Petkus, B.; Ercan, N. I.; Stroeve, P. Improved Controlled Release of Protein from Expanded-Pore Mesoporous Silica Nanoparticles Modified with Co-Functionalized Poly (n-Isopropylacrylamide) and Poly (Ethylene Glycol)(PNIPAM-PEG). Colloids Surf. B Biointerfaces 2017, 149, 297–300. DOI: 10.1016/j.colsurfb.2016.10.033.
  • Maghsoudi, M.; Abbasian, M.; Farhadi, K.; Mahmoodzadeh, F.; Ghorbani, M.; Hoseinzadeh, M. Mesoporous Si-MCM-41/Polymer as a PH-Responsive Drug Delivery System for Cancer Therapy. ChemistrySelect 2020, 5, 11901–11909. DOI: 10.1002/slct.202002071.
  • Hou, G.; Qian, J.; Xu, W.; Sun, T.; Wang, J.; Wang, Y.; Suo, A. Multifunctional PEG-b-Polypeptide-Decorated Gold Nanorod for Targeted Combined Chemo-Photothermal Therapy of Breast Cancer. Colloids Surf. B Biointerfaces 2019, 181, 602–611. DOI: 10.1016/j.colsurfb.2019.05.025.
  • Ghamkhari, A.; Abbaspour-Ravasjani, S.; Talebi, M.; Hamishehkar, H.; Hamblin, M. R. Development of a Graphene Oxide-Poly Lactide Nanocomposite as a Smart Drug Delivery System. Int. J. Biol. Macromol. 2021, 169, 521–531. DOI: 10.1016/j.ijbiomac.2020.12.084.
  • Pan, Y.; Zhou, S.; Li, Y.; Parshad, B.; Li, W.; Haag, R. Novel Dendritic Polyglycerol-Conjugated, Mesoporous Silica-Based Targeting Nanocarriers for Co-Delivery of Doxorubicin and Tariquidar to Overcome Multidrug Resistance in Breast Cancer Stem Cells. J. Control. Release 2021, 330, 1106–1117. DOI: 10.1016/j.jconrel.2020.11.015.
  • Molaparast, M.; Malekinejad, H.; Rahimi, M.; Shafiei-Irannejad, V. Biocompatible Functionalized Graphene Nanosheet for Delivery of Doxorubicin to Breast Cancer Cells. J. Drug Delivery Sci. Technol. 2022, 70, 103234. DOI: 10.1016/j.jddst.2022.103234.
  • Liu, J.; Yang, G.; Zhu, W.; Dong, Z.; Yang, Y.; Chao, Y.; Liu, Z. Light-Controlled Drug Release from Singlet-Oxygen Sensitive Nanoscale Coordination Polymers Enabling Cancer Combination Therapy. Biomaterials 2017, 146, 40–48. DOI: 10.1016/j.biomaterials.2017.09.007.
  • Ghamkhari, A.; Ghorbani, M.; Aghbolaghi, S. A Perfect Stimuli-Responsive Magnetic Nanocomposite for Intracellular Delivery of Doxorubicin. Artif. Cells. Nanomed. Biotechnol. 2018, 46, S911–S921. DOI: 10.1080/21691401.2018.1518911.
  • Anirudhan, T. S.; Sekhar, V. C. Fabrication of Functionalized Layered Double Hydroxide/Chitosan Nanocomposite with Dual Responsive Drug Release for the Targeted Therapy of Breast Cancer. Eur. Polym. J. 2020, 139, 109993. DOI: 10.1016/j.eurpolymj.2020.109993.
  • Bisht, G.; Zaidi, M. G. H.; Rayamajhi, S. Supercritical Carbon Dioxide–Assisted Synthesis of Stimuli-Responsive Magnetic Poly (N-Isopropylacrylamide)–Ferrite Biocompatible Nanocomposites for Targeted and Controlled Drug Delivery. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 708–716. DOI: 10.1080/00914037.2016.1263949.
  • Bozuyuk, U.; Yasa, O.; Yasa, I. C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-Triggered Drug Release from 3D-Printed Magnetic Chitosan Microswimmers. ACS Nano 2018, 12, 9617–9625. DOI: 10.1021/acsnano.8b05997.
  • Zhang, S.-Q.; Liu, X.; Sun, Q.-X.; Johnson, O.; Yang, T.; Chen, M.-L.; Wang, J.-H.; Chen, W. CuS@ PDA–FA Nanocomposites: A Dual Stimuli-Responsive DOX Delivery Vehicle with Ultrahigh Loading Level for Synergistic Photothermal–Chemotherapies on Breast Cancer. J. Mater. Chem. B 2020, 8, 1396–1404. DOI: 10.1039/c9tb02440a.
  • De, S.; Patra, K.; Ghosh, D.; Dutta, K.; Dey, A.; Sarkar, G.; Maiti, J.; Basu, A.; Rana, D.; Chattopadhyay, D. Tailoring the Efficacy of Multifunctional Biopolymeric Graphene Oxide Quantum Dot-Based Nanomaterial as Nanocargo in Cancer Therapeutic Application. ACS Biomater. Sci. Eng. 2018, 4, 514–531. DOI: 10.1021/acsbiomaterials.7b00689.
  • Delavari, B.; Bigdeli, B.; Mamashli, F.; Gholami, M.; Bazri, B.; Khoobi, M.; Ghasemi, A.; Baharifar, H.; Dehghani, S.; Gholibegloo, E.; et al. Others. Theranostic $α$-Lactalbumin-Polymer-Based Nanocomposite as a Drug Delivery Carrier for Cancer Therapy. ACS Biomater. Sci. Eng. 2019, 5, 5189–5208. DOI: 10.1021/acsbiomaterials.9b01236.
  • Indulekha, S.; Arunkumar, P.; Bahadur, D.; Srivastava, R. Dual Responsive Magnetic Composite Nanogels for Thermo-Chemotherapy. Colloids Surf. B Biointerfaces 2017, 155, 304–313. DOI: 10.1016/j.colsurfb.2017.04.035.
  • Jafari, S.; Soleimani, M.; Salehi, R. Nanotechnology-Based Combinational Drug Delivery Systems for Breast Cancer Treatment. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 859–869. DOI: 10.1080/00914037.2018.1517348.
  • Khanizadeh, L.; Sarvari, R.; Massoumi, B.; Agbolaghi, S.; Beygi-Khosrowshahi, Y. Dual Nano-Carriers Using Polylactide-Block-Poly (n-Isopropylacrylamide-Random-Acrylic Acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications. J. Ultrafine Grained Nanostruct. Mater. 2020, 53, 60–70.
  • Li, R.; Zhang, Y.; Lin, Z.; Lei, Q.; Liu, Y.; Li, X.; Liu, M.; Wu, G.; Luo, S.; Wang, H.; et al. Injectable Halloysite-g-Chitosan Hydrogels as Drug Carriers to Inhibit Breast Cancer Recurrence. Compos. Part B: Eng. 2021, 221, 109031. DOI: 10.1016/j.compositesb.2021.109031.
  • Ma, X.; Tao, H.; Yang, K.; Feng, L.; Cheng, L.; Shi, X.; Li, Y.; Guo, L.; Liu, Z. A Functionalized Graphene Oxide-Iron Oxide Nanocomposite for Magnetically Targeted Drug Delivery, Photothermal Therapy, and Magnetic Resonance Imaging. Nano Res. 2012, 5, 199–212. DOI: 10.1007/s12274-012-0200-y.
  • Ou, Y.-C.; Webb, J. A.; Faley, S.; Shae, D.; Talbert, E. M.; Lin, S.; Cutright, C. C.; Wilson, J. T.; Bellan, L. M.; Bardhan, R. Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer. ACS Omega 2016, 1, 234–243. DOI: 10.1021/acsomega.6b00079.
  • Patra, H. K.; Khaliq, N. U.; Romu, T.; Wiechec, E.; Borga, M.; Turner, A. P. F.; Tiwari, A. MRI-Visual Order–Disorder Micellar Nanostructures for Smart Cancer Theranostics. Adv. Healthc. Mater. 2014, 3, 526–535. DOI: 10.1002/adhm.201300225.
  • Rose, P. A.; Praseetha, P. K.; Bhagat, M.; Alexander, P.; Abdeen, S.; Chavali, M. Drug Embedded PVP Coated Magnetic Nanoparticles for Targeted Killing of Breast Cancer Cells. Technol. Cancer Res. Treat. 2013, 12, 463–472. DOI: 10.7785/tcrt.2012.500333.
  • Abaza, A.; Mahmoud, G. A.; Hegazy, E. A.; Amin, M.; Shoukry, E.; Elsheikh, B. Cytotoxic Effect of Chitosan Based Nanocomposite Synthesized by Radiation: In Vitro Liver and Breast Cancer Cell Line. J. Pharm. Pharmacol. 2018, 6, 305–319.
  • Wang, F.; Pauletti, G. M.; Wang, J.; Zhang, J.; Ewing, R. C.; Wang, Y.; Shi, D. Dual Surface-Functionalized Janus Nanocomposites of Polystyrene/Fe3O4@ SiO2 for Simultaneous Tumor Cell Targeting and Stimulus-Induced Drug Release. Adv. Mater. 2013, 25, 3485–3489. DOI: 10.1002/adma.201301376.
  • Wu, Y.; Wang, H.; Gao, F.; Xu, Z.; Dai, F.; Liu, W. An Injectable Supramolecular Polymer Nanocomposite Hydrogel for Prevention of Breast Cancer Recurrence with Theranostic and Mammoplastic Functions. Adv. Funct. Mater. 2018, 28, 1801000. DOI: 10.1002/adfm.201801000.
  • Wu, R.-S.; Lin, J.; Xing, Y.-M.; Dai, Z.-L.; Wang, L.-W.; Zhang, X.-P. PH-Sensitive Black Phosphorous–Incorporated Hydrogel as Novel Implant for Cancer Treatment. J. Pharm. Sci. 2019, 108, 2542–2551. DOI: 10.1016/j.xphs.2019.03.003.
  • Xu, H.; Cheng, L.; Wang, C.; Ma, X.; Li, Y.; Liu, Z. Polymer Encapsulated Upconversion Nanoparticle/Iron Oxide Nanocomposites for Multimodal Imaging and Magnetic Targeted Drug Delivery. Biomaterials 2011, 32, 9364–9373. DOI: 10.1016/j.biomaterials.2011.08.053.
  • Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X.; Zhong, H. Synergistic Effect of Chemo-Photothermal Therapy Using PEGylated Graphene Oxide. Biomaterials 2011, 32, 8555–8561. DOI: 10.1016/j.biomaterials.2011.07.071.
  • Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. Near Infrared Laser-Induced Targeted Cancer Therapy Using Thermoresponsive Polymer Encapsulated Gold Nanorods. J. Am. Chem. Soc. 2014, 136, 7317–7326. DOI: 10.1021/ja412735p.
  • Zhang, Y.; Chang, Y.-Q.; Han, L.; Zhang, Y.; Chen, M.-L.; Shu, Y.; Wang, J.-H. Aptamer-Anchored Di-Polymer Shell-Capped Mesoporous Carbon as a Drug Carrier for Bi-Trigger Targeted Drug Delivery. J. Mater. Chem. B 2017, 5, 6882–6889. DOI: 10.1039/c7tb01528c.
  • Zhang, X.; Wu, J.; Williams, G. R.; Niu, S.; Qian, Q.; Zhu, L.-M. Functionalized MoS2-Nanosheets for Targeted Drug Delivery and Chemo-Photothermal Therapy. Colloids Surf. B Biointerfaces 2019, 173, 101–108. DOI: 10.1016/j.colsurfb.2018.09.048.
  • Zhao, J.; Lai, H.; Lu, H.; Barner-Kowollik, C.; Stenzel, M. H.; Xiao, P. Fructose-Coated Nanodiamonds: Promising Platforms for Treatment of Human Breast Cancer. Biomacromolecules 2016, 17, 2946–2955. DOI: 10.1021/acs.biomac.6b00754.
  • Zhou, T.; Zhou, X.; Xing, D. Controlled Release of Doxorubicin from Graphene Oxide Based Charge-Reversal Nanocarrier. Biomaterials 2014, 35, 4185–4194. DOI: 10.1016/j.biomaterials.2014.01.044.
  • Zhu, X.; Li, J.; Peng, P.; Hosseini Nassab, N.; Smith, B. R. Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging Nanocomposite. Nano Lett. 2019, 19, 6725–6733. DOI: 10.1021/acs.nanolett.9b01202.
  • Zolata, H.; Afarideh, H.; Abbasi-Davani, F. Radio-Immunoconjugated, Dox-Loaded, Surface-Modified Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as a Bioprobe for Breast Cancer Tumor Theranostics. J. Radioanal. Nucl. Chem. 2014, 301, 451–460. DOI: 10.1007/s10967-014-3101-6.
  • Feng, L.; Li, K.; Shi, X.; Gao, M.; Liu, J.; Liu, Z. Smart PH-Responsive Nanocarriers Based on Nano-Graphene Oxide for Combined Chemo-and Photothermal Therapy Overcoming Drug Resistance. Adv. Healthc. Mater. 2014, 3, 1261–1271. DOI: 10.1002/adhm.201300549.
  • Wu, J.; Wang, Y.; Jiang, W.; Xu, S.; Tian, R. Synthesis and Characterization of Recyclable Clusters of Magnetic Nanoparticles as Doxorubicin Carriers for Cancer Therapy. Appl. Surf. Sci. 2014, 321, 43–49. DOI: 10.1016/j.apsusc.2014.09.184.
  • Zou, Y.; Liu, P.; Liu, C.-H.; Zhi, X.-T. Doxorubicin-Loaded Mesoporous Magnetic Nanoparticles to Induce Apoptosis in Breast Cancer Cells. Biomed. Pharmacother. 2015, 69, 355–360. DOI: 10.1016/j.biopha.2014.12.012.
  • Tansık, G.; Yakar, A.; Gündüz, U. Tailoring Magnetic PLGA Nanoparticles Suitable for Doxorubicin Delivery. J. Nanopart. Res. 2014, 16, 1–13. DOI: 10.1007/s11051-013-2171-7.
  • Bhattacharya, D.; Behera, B.; Sahu, S. K.; Ananthakrishnan, R.; Maiti, T. K.; Pramanik, P. Design of Dual Stimuli Responsive Polymer Modified Magnetic Nanoparticles for Targeted anti-Cancer Drug Delivery and Enhanced MR Imaging. New J. Chem. 2016, 40, 545–557. DOI: 10.1039/C5NJ02504D.
  • Chomoucka, J.; Drbohlavova, J.; Huska, D.; Adam, V.; Kizek, R.; Hubalek, J. Magnetic Nanoparticles and Targeted Drug Delivering. Pharmacol. Res. 2010, 62, 144–149. DOI: 10.1016/j.phrs.2010.01.014.
  • Naghib, S. M.; Zare, Y.; Rhee, K. Y. A Facile and Simple Approach to Synthesis and Characterization of Methacrylated Graphene Oxide Nanostructured Polyaniline Nanocomposites. Nanotechnol. Rev. 2020, 9, 53–60. DOI: 10.1515/ntrev-2020-0005.
  • Chaudhary, K.; Kumar, K.; Venkatesu, P.; Masram, D. T. Protein Immobilization on Graphene Oxide or Reduced Graphene Oxide Surface and Their Applications: Influence over Activity, Structural and Thermal Stability of Protein. Adv. Colloid Interface Sci. 2021, 289, 102367. DOI: 10.1016/j.cis.2021.102367.
  • Pooresmaeil, M.; Namazi, H. $β$-Cyclodextrin Grafted Magnetic Graphene Oxide Applicable as Cancer Drug Delivery Agent: Synthesis and Characterization. Mater. Chem. Phys. 2018, 218, 62–69. DOI: 10.1016/j.matchemphys.2018.07.022.
  • Homem, N. C.; Miranda, C.; Teixeira, M. A.; Teixeira, M. O.; Domingues, J. M.; Seibert, D.; Antunes, J. C.; Amorim, M. T. P.; Felgueiras, H. P. Graphene Oxide-Based Platforms for Wound Dressings and Drug Delivery Systems: A 10 Year Overview. J. Drug Delivery Sci. Technol. 2022, 78, 103992. DOI: 10.1016/j.jddst.2022.103992.
  • Wang, L.; Wu, Y.; Xie, J.; Wu, S.; Wu, Z. Characterization, Antioxidant and Antimicrobial Activities of Green Synthesized Silver Nanoparticles from Psidium Guajava L. Leaf Aqueous Extracts. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 86, 1–8. DOI: 10.1016/j.msec.2018.01.003.
  • Su, C.-Y.; Xu, Y.; Zhang, W.; Zhao, J.; Liu, A.; Tang, X.; Tsai, C.-H.; Huang, Y.; Li, L.-J. Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors. ACS Nano 2010, 4, 5285–5292. DOI: 10.1021/nn101691m.
  • Liao, L.; Peng, C.; Li, S.; Lu, Z.; Fan, Z. Evaluation of Bioresorbable Polymers as Potential Stent Material—in Vivo Degradation Behavior and Histocompatibility. J. Appl. Polym. Sci. 2017, 134, 44355. DOI: 10.1002/app.44355.
  • Wang, J.-Z.; You, M.-L.; Ding, Z.-Q.; Ye, W.-B. A Review of Emerging Bone Tissue Engineering via PEG Conjugated Biodegradable Amphiphilic Copolymers. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 1021–1035. DOI: 10.1016/j.msec.2019.01.057.
  • Cheng, H.; Gadora, K.; Wang, Z.; Zhang, H.; Jiang, W.; Chen, X.; Han, G.; Jin, Y.; Zhou, J.; Jiang, L.; Ding, Y. Functionalized Nanographene Oxide in Biomedicine Applications: Bioinspired Surface Modifications, Multidrug Shielding, and Site-Specific Trafficking. Drug Discov. Today 2019, 24, 749–762. DOI: 10.1016/j.drudis.2019.01.022.
  • Rasoulzadeh, M.; Namazi, H. Carboxymethyl Cellulose/Graphene Oxide Bio-Nanocomposite Hydrogel Beads as Anticancer Drug Carrier Agent. Carbohydr. Polym. 2017, 168, 320–326. DOI: 10.1016/j.carbpol.2017.03.014.
  • Han, L.; Zhao, J.; Zhang, X.; Cao, W.; Hu, X.; Zou, G.; Duan, X.; Liang, X.-J. Enhanced SiRNA Delivery and Silencing Gold–Chitosan Nanosystem with Surface Charge-Reversal Polymer Assembly and Good Biocompatibility. ACS Nano 2012, 6, 7340–7351. DOI: 10.1021/nn3024688.
  • Cheng, S.-J.; Chiu, H.-Y.; Kumar, P. V.; Hsieh, K. Y.; Yang, J.-W.; Lin, Y.-R.; Shen, Y.-C.; Chen, G.-Y. Simultaneous Drug Delivery and Cellular Imaging Using Graphene Oxide. Biomater. Sci. 2018, 6, 813–819. DOI: 10.1039/c7bm01192j.
  • Bellier, N.; Baipaywad, P.; Ryu, N.; Lee, J. Y.; Park, H. Recent Biomedical Advancements in Graphene Oxide-and Reduced Graphene Oxide-Based Nanocomposite Nanocarriers. Biomater. Res. 2022, 26, 65. DOI: 10.1186/s40824-022-00313-2.
  • Park, J.; Kim, B.; Han, J.; Oh, J.; Park, S.; Ryu, S.; Jung, S.; Shin, J.-Y.; Lee, B. S.; Hong, B. H. et al. Graphene Oxide Flakes as a Cellular Adhesive: Prevention of Reactive Oxygen Species Mediated Death of Implanted Cells for Cardiac Repair. ACS Nano 2015, 9, 4987–4999. DOI: 10.1021/nn507149w.
  • Siriviriyanun, A.; Popova, M.; Imae, T.; Kiew, L. V.; Looi, C. Y.; Wong, W. F.; Lee, H. B.; Chung, L. Y. Preparation of Graphene Oxide/Dendrimer Hybrid Carriers for Delivery of Doxorubicin. Chem. Eng. J. 2015, 281, 771–781. DOI: 10.1016/j.cej.2015.07.024.
  • Keyikoglu, R.; Khataee, A.; Yoon, Y. Layered Double Hydroxides for Removing and Recovering Phosphate: Recent Advances and Future Directions. Adv. Colloid Interface Sci. 2022, 300, 102598. DOI: 10.1016/j.cis.2021.102598.
  • Jing, G.; Yang, L.; Wang, H.; Niu, J.; Li, Y.; Wang, S. Interference of Layered Double Hydroxide Nanoparticles with Pathways for Biomedicine Applications. Adv. Drug Deliv. Rev. 2022, 188, 114451. DOI: 10.1016/j.addr.2022.114451.
  • Cao, Z.; Li, B.; Sun, L.; Li, L.; Xu, Z. P.; Gu, Z. 2D Layered Double Hydroxide Nanoparticles: Recent Progress toward Preclinical/Clinical Nanomedicine. Small Methods 2020, 4, 1900343. DOI: 10.1002/smtd.201900343.
  • Suriamoorthy, P.; Zhang, X.; Hao, G.; Joly, A. G.; Singh, S.; Hossu, M.; Sun, X.; Chen, W. Folic Acid-CdTe Quantum Dot Conjugates and Their Applications for Cancer Cell Targeting. Cancer Nanotechnol. 2010, 1, 19–28. DOI: 10.1007/s12645-010-0003-3.
  • Mashima, T.; Sato, S.; Sugimoto, Y.; Tsuruo, T.; Seimiya, H. Promotion of Glioma Cell Survival by Acyl-CoA Synthetase 5 under Extracellular Acidosis Conditions. Oncogene 2009, 28, 9–19. DOI: 10.1038/onc.2008.355.
  • Soetaert, F.; Korangath, P.; Serantes, D.; Fiering, S.; Ivkov, R. Cancer Therapy with Iron Oxide Nanoparticles: Agents of Thermal and Immune Therapies. Adv. Drug Deliv. Rev. 2020, 163-164, 65–83. DOI: 10.1016/j.addr.2020.06.025.
  • Sharifianjazi, F.; Irani, M.; Esmaeilkhanian, A.; Bazli, L.; Asl, M. S.; Jang, H. W.; Kim, S. Y.; Ramakrishna, S.; Shokouhimehr, M.; Varma, R. S. Polymer Incorporated Magnetic Nanoparticles: Applications for Magnetoresponsive Targeted Drug Delivery. Mater. Sci. Eng.: B 2021, 272, 115358. DOI: 10.1016/j.mseb.2021.115358.
  • Kianfar, E. Magnetic Nanoparticles in Targeted Drug Delivery: A Review. J. Supercond. Nov. Magn. 2021, 34, 1709–1735. DOI: 10.1007/s10948-021-05932-9.
  • Kim, J.-E.; Shin, J.-Y.; Cho, M.-H. Magnetic Nanoparticles: An Update of Application for Drug Delivery and Possible Toxic Effects. Arch. Toxicol. 2012, 86, 685–700. DOI: 10.1007/s00204-011-0773-3.
  • Stanicki, D.; Vangijzegem, T.; Ternad, I.; Laurent, S. An Update on the Applications and Characteristics of Magnetic Iron Oxide Nanoparticles for Drug Delivery. Expert Opin. Drug Deliv. 2022, 19, 321–335. DOI: 10.1080/17425247.2022.2047020.
  • Leporatti, S. Halloysite Clay Nanotubes as Nano-Bazookas for Drug Delivery. Polym. Int. 2017, 66, 1111–1118. DOI: 10.1002/pi.5347.
  • Karewicz, A.; Machowska, A.; Kasprzyk, M.; Ledwójcik, G. Application of Halloysite Nanotubes in Cancer Therapy—A Review. Materials 2021, 14, 2943. DOI: 10.3390/ma14112943.
  • Cheng, Z.-L.; Cao, B.-C.; Liu, Z. Study on Intercalation in Layered Structure of Halloysite Nanotubes (HNTs). Micro Nano Lett. 2019, 14, 585–589. DOI: 10.1049/mnl.2018.5625.
  • Lvov, Y. M.; DeVilliers, M. M.; Fakhrullin, R. F. The Application of Halloysite Tubule Nanoclay in Drug Delivery. Expert Opin. Drug Deliv. 2016, 13, 977–986. DOI: 10.1517/17425247.2016.1169271.
  • Massaro, M.; Noto, R.; Riela, S. Past, Present and Future Perspectives on Halloysite Clay Minerals. Molecules 2020, 25, 4863. DOI: 10.3390/molecules25204863.
  • Saif, M. J.; Asif, H. M.; Naveed, M. Properties and Modification Methods of Halloysite Nanotubes: A State-of-the-Art Review. J. Chil. Chem. Soc. 2018, 63, 4109–4125. DOI: 10.4067/s0717-97072018000304109.
  • Wu, Y.-P.; Yang, J.; Gao, H.-Y.; Shen, Y.; Jiang, L.; Zhou, C.; Li, Y.-F.; He, R.-R.; Liu, M. Folate-Conjugated Halloysite Nanotubes, an Efficient Drug Carrier, Deliver Doxorubicin for Targeted Therapy of Breast Cancer. ACS Appl. Nano Mater. 2018, 1, 595–608. DOI: 10.1021/acsanm.7b00087.
  • Riley, R. S.; Day, E. S. Gold Nanoparticle-Mediated Photothermal Therapy: Applications and Opportunities for Multimodal Cancer Treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1449.
  • Abadeer, N. S.; Murphy, C. J. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. In Nanomaterials and Neoplasms, Voliani, V., Ed.; Jenny Stanford Publishing; 2021, pp 143–217.
  • Rao, K. M.; Kumar, A.; Suneetha, M.; Han, S. S. PH and near-Infrared Active; Chitosan-Coated Halloysite Nanotubes Loaded with Curcumin-Au Hybrid Nanoparticles for Cancer Drug Delivery. Int. J. Biol. Macromol. 2018, 112, 119–125. DOI: 10.1016/j.ijbiomac.2018.01.163.
  • Pakravan, A.; Azizi, M.; Rahimi, F.; Bani, F.; Mahmoudzadeh, F.; Salehi, R.; Mahkam, M. Comparative Effect of Thermo/PH-Responsive Polymer-Coated Gold Nanocages and Hollow Nanostars on Chemo-Photothermal Therapy of Breast Cancer Cells. Cancer Nano 2021, 12, 1–26. DOI: 10.1186/s12645-021-00091-x.
  • Abbasian, M.; Mahmoodzadeh, F.; Khalili, A.; Salehi, R. Chemotherapy of Breast Cancer Cells Using Novel PH-Responsive Cellulose-Based Nanocomposites. Adv. Pharm. Bull. 2019, 9, 122–131. DOI: 10.15171/apb.2019.015.
  • Wong, P. T.; Choi, S. K. Mechanisms and Implications of Dual-Acting Methotrexate in Folate-Targeted Nanotherapeutic Delivery. Int. J. Mol. Sci. 2015, 16, 1772–1790. DOI: 10.3390/ijms16011772.
  • Foroushani, M. S.; Niroumand, N.; Shervedani, R. K.; Yaghoobi, F.; Kefayat, A.; Torabi, M. A Theranostic System Based on Nanocomposites of Manganese Oxide Nanoparticles and a PH Sensitive Polymer: Preparation, and Physicochemical Characterization. Bioelectrochemistry 2019, 130, 107347. DOI: 10.1016/j.bioelechem.2019.107347.
  • Moradi, S.; Najjar, R.; Hamishehkar, H.; Lotfi, A. Triple-Responsive Drug Nanocarrier: Magnetic Core-Shell Nanoparticles of Fe3O4@ Poly (N-Isopropylacrylamide)-Grafted-Chitosan, Synthesis and in Vitro Cytotoxicity Evaluation against Human Lung and Breast Cancer Cells. J. Drug Delivery Sci. Technol. 2022, 72, 103426. DOI: 10.1016/j.jddst.2022.103426.
  • Najafipour, A.; Gharieh, A.; Fassihi, A.; Sadeghi-Aliabadi, H.; Mahdavian, A. R. MTX-Loaded Dual Thermoresponsive and PH-Responsive Magnetic Hydrogel Nanocomposite Particles for Combined Controlled Drug Delivery and Hyperthermia Therapy of Cancer. Mol. Pharm. 2021, 18, 275–284. DOI: 10.1021/acs.molpharmaceut.0c00910.
  • Abbasian, M.; Hasanzadeh, P.; Mahmoodzadeh, F.; Salehi, R. Novel Cationic Cellulose-Based Nanocomposites for Targeted Delivery of Methotrexate to Breast Cancer Cells. J. Macromol. Sci. Part A 2020, 57, 99–115. DOI: 10.1080/10601325.2019.1673174.
  • Alidadiyani, N.; Salehi, R.; Ghaderi, S.; Samadi, N.; Davaran, S. Synergistic Antiproliferative Effects of Methotrexate-Loaded Smart Silica Nanocomposites in MDA-MB-231 Breast Cancer Cells. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 603–609. DOI: 10.3109/21691401.2014.975235.
  • Mahkam, M.; Zeynabad, F. B.; Alizadeh, E.; Rahimi, M.; Rahimi, F.; Salehi, R. Novel Methotrexate-Ciprofloxacin Loaded Alginate-Clay Based Nanocomposite as Anticancer and Antibacterial Co-Drug Delivery System. Adv. Pharm. Bull. 2021, 11, 477–489. DOI: 10.34172/apb.2021.055.
  • Basu, T.; Singh, S.; Pal, B. Fe3O4@ PLGA-PEG Nanocomposite for Improved Delivery of Methotrexate in Cancer Treatment. ChemistrySelect 2018, 3, 8522–8528. DOI: 10.1002/slct.201801769.
  • Hosseini Sadr, S.; Davaran, S.; Alizadeh, E.; Salehi, R.; Ramazani, A. Enhanced Anticancer Potency by Thermo/PH-Responsive PCL-Based Magnetic Nanoparticles. J. Biomater. Sci. Polym. Ed. 2018, 29, 277–308. DOI: 10.1080/09205063.2017.1414482.
  • Khodashenas, B.; Ardjmand, M.; Rad, A. S.; Esfahani, M. R. Gelatin-Coated Gold Nanoparticles as an Effective PH-Sensitive Methotrexate Drug Delivery System for Breast Cancer Treatment. Mater. Today Chem. 2021, 20, 100474. DOI: 10.1016/j.mtchem.2021.100474.
  • Rasouli, S.; Davaran, S.; Rasouli, F.; Mahkam, M.; Salehi, R. Positively Charged Functionalized Silica Nanoparticles as Nontoxic Carriers for Triggered Anticancer Drug Release. Des. Monomers Polym. 2014, 17, 227–237. DOI: 10.1080/15685551.2013.840475.
  • Shahbazi, M.-A.; Almeida, P. V.; Mäkilä, E. M.; Kaasalainen, M. H.; Salonen, J. J.; Hirvonen, J. T.; Santos, H. A. Augmented Cellular Trafficking and Endosomal Escape of Porous Silicon Nanoparticles via Zwitterionic Bilayer Polymer Surface Engineering. Biomaterials 2014, 35, 7488–7500. DOI: 10.1016/j.biomaterials.2014.05.020.
  • Shakeran, Z.; Keyhanfar, M.; Varshosaz, J.; Sutherland, D. S. Biodegradable Nanocarriers Based on Chitosan-Modified Mesoporous Silica Nanoparticles for Delivery of Methotrexate for Application in Breast Cancer Treatment. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111526. DOI: 10.1016/j.msec.2020.111526.
  • Zeynabad, F. B.; Salehi, R.; Mahkam, M. Design of PH-Responsive Antimicrobial Nanocomposite as Dual Drug Delivery System for Tumor Therapy. Appl. Clay Sci. 2017, 141, 23–35. DOI: 10.1016/j.clay.2017.02.015.
  • Roy, E.; Patra, S.; Madhuri, R.; Sharma, P. K. Stimuli-Responsive Poly (N-Isopropyl Acrylamide)-Co-Tyrosine@ Gadolinium: Iron Oxide Nanoparticle-Based Nanotheranostic for Cancer Diagnosis and Treatment. Colloids Surf. B Biointerfaces 2016, 142, 248–258. DOI: 10.1016/j.colsurfb.2016.02.053.
  • Alvarez-Lorenzo, C.; Blanco-Fernandez, B.; Puga, A. M.; Concheiro, A. Crosslinked Ionic Polysaccharides for Stimuli-Sensitive Drug Delivery. Adv. Drug Deliv. Rev. 2013, 65, 1148–1171. DOI: 10.1016/j.addr.2013.04.016.
  • Ahsan, S. M.; Thomas, M.; Reddy, K. K.; Sooraparaju, S. G.; Asthana, A.; Bhatnagar, I. Chitosan as Biomaterial in Drug Delivery and Tissue Engineering. Int. J. Biol. Macromol. 2018, 110, 97–109. DOI: 10.1016/j.ijbiomac.2017.08.140.
  • Vickers, N. J. Animal Communication: When I’m Calling You, Will You Answer Too? Curr. Biol. 2017, 27, R713–R715. DOI: 10.1016/j.cub.2017.05.064.
  • García-Fernández, A.; Sancenón, F.; Martínez-Máñez, R. Mesoporous Silica Nanoparticles for Pulmonary Drug Delivery. Adv. Drug Deliv. Rev. 2021, 177, 113953. DOI: 10.1016/j.addr.2021.113953.
  • Rasouli, S.; Davaran, S.; Rasouli, F.; Mahkam, M.; Salehi, R. Synthesis, Characterization and PH-Controllable Methotrexate Release from Biocompatible Polymer/Silica Nanocomposite for Anticancer Drug Delivery. Drug Deliv. 2014, 21, 155–163. DOI: 10.3109/10717544.2013.838714.
  • Radu, D. R.; Lai, C.-Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S.-Y. A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent. J. Am. Chem. Soc. 2004, 126, 13216–13217. DOI: 10.1021/ja046275m.
  • Rosenholm, J. M.; Mamaeva, V.; Sahlgren, C.; Lindén, M. Nanoparticles in Targeted Cancer Therapy: Mesoporous Silica Nanoparticles Entering Preclinical Development Stage. Nanomedicine (Lond) 2012, 7, 111–120. DOI: 10.2217/nnm.11.166.
  • Ayala, V.; Herrera, A. P.; Latorre-Esteves, M.; Torres-Lugo, M.; Rinaldi, C. Effect of Surface Charge on the Colloidal Stability and in Vitro Uptake of Carboxymethyl Dextran-Coated Iron Oxide Nanoparticles. J. Nanopart. Res. 2013, 15, 1–14. DOI: 10.1007/s11051-013-1874-0.
  • Shahbazi, M.-A.; Almeida, P. V.; Mäkilä, E.; Correia, A.; Ferreira, M. P. A.; Kaasalainen, M.; Salonen, J.; Hirvonen, J.; Santos, H. A. Poly (Methyl Vinyl Ether-Alt-Maleic Acid)-Functionalized Porous Silicon Nanoparticles for Enhanced Stability and Cellular Internalization. Macromol. Rapid Commun. 2014, 35, 624–629. DOI: 10.1002/marc.201300868.
  • Arias, J. L.; Gallardo, V.; Ruiz, M. A.; Delgado, Á. V. Magnetite/Poly (Alkylcyanoacrylate)(Core/Shell) Nanoparticles as 5-Fluorouracil Delivery Systems for Active Targeting. Eur. J. Pharm. Biopharm. 2008, 69, 54–63. DOI: 10.1016/j.ejpb.2007.11.002.
  • Nazemian, M.; Hojati, V.; Zavareh, S.; Madanchi, H.; Hashemi-Moghaddam, H. Immobilized Peptide on the Surface of Poly L-DOPA/Silica for Targeted Delivery of 5-Fluorouracil to Breast Tumor. Int. J. Pept. Res. Ther. 2020, 26, 259–269. DOI: 10.1007/s10989-019-09834-2.
  • Nivethaa, E. A. K.; Dhanavel, S.; Narayanan, V.; Stephen, A. Chitosan Stabilized Ag-Au Nanoalloy for Colorimetric Sensing and 5-Fluorouracil Delivery. Int. J. Biol. Macromol. 2017, 95, 862–872. DOI: 10.1016/j.ijbiomac.2016.10.066.
  • Zavareh, H. S.; Pourmadadi, M.; Moradi, A.; Yazdian, F.; Omidi, M. Chitosan/Carbon Quantum Dot/Aptamer Complex as a Potential Anticancer Drug Delivery System towards the Release of 5-Fluorouracil. Int. J. Biol. Macromol. 2020, 165, 1422–1430. DOI: 10.1016/j.ijbiomac.2020.09.166.
  • Anirudhan, T. S.; Christa, J. Temperature and PH Sensitive Multi-Functional Magnetic Nanocomposite for the Controlled Delivery of 5-Fluorouracil, an Anticancer Drug. J. Drug Delivery Sci. Technol. 2020, 55, 101476. DOI: 10.1016/j.jddst.2019.101476.
  • Nivethaa, E. A. K.; Dhanavel, S.; Narayanan, V.; Kalkura, S. N.; Sivasankari, J.; Sivanandham, N.; Stephen, A. CS/Au/MWCNT Nanohybrid as an Efficient Carrier for the Sustained Release of 5-FU and a Study of Its Cytotoxicity on MCF-7. RSC Adv. 2021, 11, 4584–4592. DOI: 10.1039/d0ra08537e.
  • Hashemi-Moghaddam, H.; Kazemi-Bagsangani, S.; Jamili, M.; Zavareh, S. Evaluation of Magnetic Nanoparticles Coated by 5-Fluorouracil Imprinted Polymer for Controlled Drug Delivery in Mouse Breast Cancer Model. Int. J. Pharm. 2016, 497, 228–238. DOI: 10.1016/j.ijpharm.2015.11.040.
  • Gajendiran, M.; Jo, H.; Kim, K.; Balasubramanian, S. Green Synthesis of Multifunctional PEG-Carboxylate $π$ Back-Bonded Gold Nanoconjugates for Breast Cancer Treatment. Int. J. Nanomedicine 2019, 14, 819–834. DOI: 10.2147/IJN.S190946.
  • Matai, I.; Sachdev, A.; Gopinath, P. Multicomponent 5-Fluorouracil Loaded PAMAM Stabilized-Silver Nanocomposites Synergistically Induce Apoptosis in Human Cancer Cells. Biomater. Sci. 2015, 3, 457–468. DOI: 10.1039/c4bm00360h.
  • Pooresmaeil, M.; Asl, E. A.; Namazi, H. A New PH-Sensitive CS/Zn-MOF@ GO Ternary Hybrid Compound as a Biofriendly and Implantable Platform for Prolonged 5-Fluorouracil Delivery to Human Breast Cancer Cells. J. Alloys Compd. 2021, 885, 160992. DOI: 10.1016/j.jallcom.2021.160992.
  • Sivakumar, B.; Aswathy, R. G.; Sreejith, R.; Nagaoka, Y.; Iwai, S.; Suzuki, M.; Fukuda, T.; Hasumura, T.; Yoshida, Y.; Maekawa, T.; Sakthikumar, D. N. Bacterial Exopolysaccharide Based Magnetic Nanoparticles: A Versatile Nanotool for Cancer Cell Imaging, Targeted Drug Delivery and Synergistic Effect of Drug and Hyperthermia Mediated Cancer Therapy. J. Biomed. Nanotechnol. 2014, 10, 885–899. DOI: 10.1166/jbn.2014.1820.
  • Maruthapandi, M.; Saravanan, A.; Das, P.; Luong, J. H. T.; Gedanken, A. Microbial Inhibition and Biosensing with Multifunctional Carbon Dots: Progress and Perspectives. Biotechnol. Adv. 2021, 53, 107843. DOI: 10.1016/j.biotechadv.2021.107843.
  • Molaei, M. J. Carbon Quantum Dots and Their Biomedical and Therapeutic Applications: A Review. RSC Adv. 2019, 9, 6460–6481. DOI: 10.1039/c8ra08088g.
  • Sarkar, N.; Sahoo, G.; Das, R.; Prusty, G.; Swain, S. K. Carbon Quantum Dot Tailored Calcium Alginate Hydrogel for PH Responsive Controlled Delivery of Vancomycin. Eur. J. Pharm. Sci. 2017, 109, 359–371. DOI: 10.1016/j.ejps.2017.08.015.
  • Lokina, S.; Stephen, A.; Kaviyarasan, V.; Arulvasu, C.; Narayanan, V. Cytotoxicity and Antimicrobial Activities of Green Synthesized Silver Nanoparticles. Eur. J. Med. Chem. 2014, 76, 256–263. DOI: 10.1016/j.ejmech.2014.02.010.
  • Mohammadpour-Haratbar, A.; Zare, Y.; Rhee, K. Y. Development of a Theoretical Model for Estimating the Electrical Conductivity of a Polymeric System Reinforced with Silver Nanowires Applicable for the Biosensing of Breast Cancer Cells. J. Mater. Res. Technol. 2022, 18, 4894–4902. DOI: 10.1016/j.jmrt.2022.04.113.
  • Zare, Y.; Rhee, K. Y. A Multistep Methodology for Effective Conductivity of Carbon Nanotubes Reinforced Nanocomposites. J. Alloys Compd. 2019, 793, 1–8. DOI: 10.1016/j.jallcom.2019.04.070.
  • Zare, Y.; Rhee, K. Y. Following the Morphological and Thermal Properties of PLA/PEO Blends Containing Carbon Nanotubes (CNTs) during Hydrolytic Degradation. Compos. Part B: Eng. 2019, 175, 107132. DOI: 10.1016/j.compositesb.2019.107132.
  • Kakran, M.; Li, L. Carbon Nanomaterials for Drug Delivery. Key Eng. Mater. 2012, 508, 76–80. DOI: 10.4028/www.scientific.net/KEM.508.76.
  • Zhang, W.; Zhang, Z.; Zhang, Y. The Application of Carbon Nanotubes in Target Drug Delivery Systems for Cancer Therapies. Nanoscale Res. Lett. 2011, 6, 555. DOI: 10.1186/1556-276X-6-555.
  • Sabzehzari, M.; Zeinali, M.; Naghavi, M. R. Alternative Sources and Metabolic Engineering of Taxol: Advances and Future Perspectives. Biotechnol. Adv. 2020, 43, 107569. DOI: 10.1016/j.biotechadv.2020.107569.
  • Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Xia, Y.; Durrell, A. C.; Tirrell, D. A.; Grubbs, R. H. Drug-Loaded, Bivalent-Bottle-Brush Polymers by Graft-through ROMP. Macromolecules 2010, 43, 10326–10335. DOI: 10.1021/ma1021506.
  • Singh, S.; Ghosh, C.; Roy, P.; Pal, K. Biosynthesis of Folic Acid Appended PHBV Modified Copper Oxide Nanorods for PH Sensitive Drug Release in Targeted Breast Cancer Therapy. Int. J. Pharm. 2022, 622, 121831. DOI: 10.1016/j.ijpharm.2022.121831.
  • Kadkhoda, J.; Aghanejad, A.; Safari, B.; Barar, J.; Rasta, S. H.; Davaran, S. Aptamer-Conjugated Gold Nanoparticles for Targeted Paclitaxel Delivery and Photothermal Therapy in Breast Cancer. J. Drug Delivery Sci. Technol. 2022, 67, 102954. DOI: 10.1016/j.jddst.2021.102954.
  • Vinothini, K.; Rajendran, N. K.; Ramu, A.; Elumalai, N.; Rajan, M. Folate Receptor Targeted Delivery of Paclitaxel to Breast Cancer Cells via Folic Acid Conjugated Graphene Oxide Grafted Methyl Acrylate Nanocarrier. Biomed. Pharmacother. 2019, 110, 906–917. DOI: 10.1016/j.biopha.2018.12.008.
  • Hashemi-Moghaddam, H.; Zavareh, S.; Gazi, E. M.; Jamili, M. Assessment of Novel Core–Shell Fe3O4@ Poly l-DOPA Nanoparticles for Targeted Taxol®Delivery to Breast Tumor in a Mouse Model. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 1036–1043. DOI: 10.1016/j.msec.2018.09.005.
  • Park, J.; Park, J.; Castanares, M. A.; Collins, D. S.; Yeo, Y. Magnetophoretic Delivery of a Tumor-Priming Agent for Chemotherapy of Metastatic Murine Breast Cancer. Mol. Pharm. 2019, 16, 1864–1873. DOI: 10.1021/acs.molpharmaceut.8b01148.
  • Wu, H.; Song, L.; Chen, L.; Zhang, W.; Chen, Y.; Zang, F.; Chen, H.; Ma, M.; Gu, N.; Zhang, Y. Injectable Magnetic Supramolecular Hydrogel with Magnetocaloric Liquid-Conformal Property Prevents Post-Operative Recurrence in a Breast Cancer Model. Acta Biomater. 2018, 74, 302–311. DOI: 10.1016/j.actbio.2018.04.052.
  • Chiang, C.-S.; Hu, S.-H.; Liao, B.-J.; Chang, Y.-C.; Chen, S.-Y. Enhancement of Cancer Therapy Efficacy by Trastuzumab-Conjugated and PH-Sensitive Nanocapsules with the Simultaneous Encapsulation of Hydrophilic and Hydrophobic Compounds. Nanomedicine 2014, 10, 99–107. DOI: 10.1016/j.nano.2013.07.009.
  • Mohammadpour-Haratbar, A.; Mazinani, S.; Sharif, F.; Bazargan, A. M. Improving Nonenzymatic Biosensing Performance of Electrospun Carbon Nanofibers Decorated with Ni/Co Particles via Oxidation. Appl. Biochem. Biotechnol. 2022, 194, 1–23.
  • Mohammadpour-Haratbar, A.; Mosallanejad, B.; Zare, Y.; Rhee, K. Y.; Park, S.-J. Co3O4 Nanoparticles Embedded in Electrospun Carbon Nanofibers as Free-Standing Nanocomposite Electrodes as Highly Sensitive Enzyme-Free Glucose Biosensors. Rev. Adv. Mater. Sci. 2022, 61, 744–755. DOI: 10.1515/rams-2022-0251.
  • Elsayed, A. M.; Sherif, N. M.; Hassan, N. S.; Althobaiti, F.; Hanafy, N. A. N.; Sahyon, H. A. Novel Quercetin Encapsulated Chitosan Functionalized Copper Oxide Nanoparticles as anti-Breast Cancer Agent via Regulating P53 in Rat Model. Int. J. Biol. Macromol. 2021, 185, 134–152. DOI: 10.1016/j.ijbiomac.2021.06.085.
  • Yang, Y.; Hu, H.; Wang, W.; Duan, X.; Luo, S.; Wang, X.; Sun, Y. The Identification of Functional Proteins from Amputated Lumbricus Eisenia Fetida on the Wound Healing Process. Biomed. Pharmacother. 2017, 95, 1469–1478. DOI: 10.1016/j.biopha.2017.09.049.
  • Benguigui, M.; Weitz, I. S.; Timaner, M.; Kan, T.; Shechter, D.; Perlman, O.; Sivan, S.; Raviv, Z.; Azhari, H.; Shaked, Y. Copper Oxide Nanoparticles Inhibit Pancreatic Tumor Growth Primarily by Targeting Tumor Initiating Cells. Sci. Rep. 2019, 9, 12613. DOI: 10.1038/s41598-019-48959-8.
  • Raza, Z. A.; Noor, S.; Majeed, M. I. PEGylation of Poly (Hydroxybutyrate) into Multicomponent Nanostructures and Loading Thereon with Bioactive Molecules for Potential Biomedical Applications. J. Polym. Res. 2021, 28, 1–11. DOI: 10.1007/s10965-021-02467-4.
  • He, H.; Chen, S.; Zhou, J.; Dou, Y.; Song, L.; Che, L.; Zhou, X.; Chen, X.; Jia, Y.; Zhang, J. et al. Cyclodextrin-Derived PH-Responsive Nanoparticles for Delivery of Paclitaxel. Biomaterials 2013, 34, 5344–5358. DOI: 10.1016/j.biomaterials.2013.03.068.
  • Sun, Y.; Du, L.; Liu, Y.; Li, X.; Li, M.; Jin, Y.; Qian, X. Transdermal Delivery of the in Situ Hydrogels of Curcumin and Its Inclusion Complexes of Hydroxypropyl-$β$-Cyclodextrin for Melanoma Treatment. Int. J. Pharm. 2014, 469, 31–39. DOI: 10.1016/j.ijpharm.2014.04.039.
  • K. Purushothaman, B.; Harsha S, M.; Maheswari, P. U.; Sheriffa Begum, K. M. Magnetic Assisted Curcumin Drug Delivery Using Folate Receptor Targeted Hybrid Casein-Calcium Ferrite Nanocarrier. J. Drug Delivery Sci. Technol. 2019, 52, 509–520. DOI: 10.1016/j.jddst.2019.05.010.
  • Dai, M.; Frezzo, J. A.; Sharma, E.; Chen, R.; Singh, N.; Yuvienco, C.; Caglar, E.; Xiao, S.; Saxena, A.; Montclare, J. K. Engineered Protein Polymer-Gold Nanoparticle Hybrid Materials for Small Molecule Delivery. J. Nanomed. Nanotechnol. 2016, 7, 356. DOI: 10.4172/2157-7439.1000356.
  • Akrami, M.; Khoobi, M.; Khalilvand-Sedagheh, M.; Haririan, I.; Bahador, A.; Faramarzi, M. A.; Rezaei, S.; Javar, H. A.; Salehi, F.; Ardestani, S. K.; Shafiee, A. Evaluation of Multilayer Coated Magnetic Nanoparticles as Biocompatible Curcumin Delivery Platforms for Breast Cancer Treatment. RSC Adv. 2015, 5, 88096–88107. DOI: 10.1039/C5RA13838H.
  • Song, W.; Su, X.; Gregory, D. A.; Li, W.; Cai, Z.; Zhao, X. Magnetic Alginate/Chitosan Nanoparticles for Targeted Delivery of Curcumin into Human Breast Cancer Cells. Nanomaterials 2018, 8, 907. DOI: 10.3390/nano8110907.
  • Neisi, Z.; Ansari-Asl, Z.; Jafarinejad-Farsangi, S.; Tarzi, M. E.; Sedaghat, T.; Nobakht, V. Synthesis, Characterization and Biocompatibility of Polypyrrole/Cu (II) Metal-Organic Framework Nanocomposites. Colloids Surf. B Biointerfaces 2019, 178, 365–376. DOI: 10.1016/j.colsurfb.2019.03.032.
  • Samadi, A.; Haseli, S.; Pourmadadi, M.; Rashedi, H.; Yazdian, F.; Navaei-Nigjeh, M. Curcumin-Loaded Chitosan-Agarose-Montmorillonite Hydrogel Nanocomposite for the Treatment of Breast Cancer. In 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); 2020; pp 148–153. DOI: 10.1109/ICBME51989.2020.9319425.
  • Sawant, V. J.; Bamane, S. R.; Shejwal, R. V.; Patil, S. B. Comparison of Drug Delivery Potentials of Surface Functionalized Cobalt and Zinc Ferrite Nanohybrids for Curcumin in to MCF-7 Breast Cancer Cells. J. Magn. Magn. Mater. 2016, 417, 222–229. DOI: 10.1016/j.jmmm.2016.05.061.
  • Srinivasan, S. Y.; Paknikar, K. M.; Bodas, D.; Gajbhiye, V. Applications of Cobalt Ferrite Nanoparticles in Biomedical Nanotechnology. Nanomedicine (Lond) 2018, 13, 1221–1238. DOI: 10.2217/nnm-2017-0379.
  • Yan, J.; Huang, Y.; Liu, X.; Zhao, X.; Li, T.; Zhao, Y.; Liu, P. Polypyrrole-Based Composite Materials for Electromagnetic Wave Absorption. Polym. Rev. 2021, 61, 646–687. DOI: 10.1080/15583724.2020.1870490.
  • Yin, Z.; Wan, S.; Yang, J.; Kurmoo, M.; Zeng, M.-H. Recent Advances in Post-Synthetic Modification of Metal–Organic Frameworks: New Types and Tandem Reactions. Coord. Chem. Rev. 2019, 378, 500–512. DOI: 10.1016/j.ccr.2017.11.015.
  • Sharma, D.; Satapathy, B. K. Polymer Substrate-Based Transition Metal Modified Electrospun Nanofibrous Materials: Current Trends in Functional Applications and Challenges. Polym. Rev. 2022, 62, 439–484. DOI: 10.1080/15583724.2021.1972006.
  • Norouzi, S.; Majeed, M.; Pirro, M.; Generali, D.; Sahebkar, A. Curcumin as an Adjunct Therapy and MicroRNA Modulator in Breast Cancer. Curr. Pharm. Des. 2018, 24, 171–177. DOI: 10.2174/1381612824666171129203506.
  • Nagaraju, G. P.; Aliya, S.; Zafar, S. F.; Basha, R.; Diaz, R.; El-Rayes, B. F. The Impact of Curcumin on Breast Cancer. Integr Biol (Camb) 2012, 4, 996–1007. DOI: 10.1039/c2ib20088k.
  • Ibrahim, O. M.; El-Deeb, N. M.; Abbas, H.; Elmasry, S. M.; El-Aassar, M. R. Alginate Based Tamoxifen/Metal Dual Core-Folate Decorated Shell: Nanocomposite Targeted Therapy for Breast Cancer via ROS-Driven NF-$κ$B Pathway Modulation. Int. J. Biol. Macromol. 2020, 146, 119–131. DOI: 10.1016/j.ijbiomac.2019.12.266.
  • Varadharajaperumal, P.; Subramanian, B.; Santhanam, A. Biopolymer Mediated Nanoparticles Synthesized from Adenia Hondala for Enhanced Tamoxifen Drug Delivery in Breast Cancer Cell Line. Adv. Nat. Sci: Nanosci. Nanotechnol. 2017, 8, 035011. DOI: 10.1088/2043-6254/aa7253.
  • Vivek, R.; Thangam, R.; Kumar, S. R.; Rejeeth, C.; Kumar, G. S.; Sivasubramanian, S.; Vincent, S.; Gopi, D.; Kannan, S. HER2 Targeted Breast Cancer Therapy with Switchable “off/on” Multifunctional “Smart” Magnetic Polymer Core–Shell Nanocomposites. ACS Appl. Mater. Interfaces. 2016, 8, 2262–2279. DOI: 10.1021/acsami.5b11103.
  • Chen, L.; Zhou, L.; Wang, C.; Han, Y.; Lu, Y.; Liu, J.; Hu, X.; Yao, T.; Lin, Y.; Liang, S. et al. Tumor-Targeted Drug and CpG Delivery System for Phototherapy and Docetaxel-Enhanced Immunotherapy with Polarization toward M1-Type Macrophages on Triple Negative Breast Cancers. Adv. Mater. 2019, 31, 1904997. DOI: 10.1002/adma.201904997.
  • Taheri-Ledari, R.; Zhang, W.; Radmanesh, M.; Mirmohammadi, S. S.; Maleki, A.; Cathcart, N.; Kitaev, V. Multi-Stimuli Nanocomposite Therapeutic: Docetaxel Targeted Delivery and Synergies in Treatment of Human Breast Cancer Tumor. Small 2020, 16, e2002733. DOI: 10.1002/smll.202002733.
  • Koopaei, M. N.; Dinarvand, R.; Amini, M.; Rabbani, H.; Emami, S.; Ostad, S. N.; Atyabi, F. Docetaxel Immunonanocarriers as Targeted Delivery Systems for HER 2-Positive Tumor Cells: Preparation, Characterization, and Cytotoxicity Studies. Int. J. Nanomedicine 2011, 6, 1903–1912. DOI: 10.2147/IJN.S23211.
  • Zhu, X.; Zhang, Y.; Huang, H.; Zhang, H.; Hou, L.; Zhang, Z. Functionalized Graphene Oxide-Based Thermosensitive Hydrogel for near-Infrared Chemo-Photothermal Therapy on Tumor. J. Biomater. Appl. 2016, 30, 1230–1241. DOI: 10.1177/0885328215619583.
  • Alexander, A.; Pillai, A. S.; Manikantan, V.; Varalakshmi, G. S.; Akash, B. A.; Enoch, I. V. M.; V. Magnetic and Luminescent Neodymium-Doped Carbon Dot–Cyclodextrin Polymer Nanocomposite as an Anticancer Drug-Carrier. Mater. Lett. 2022, 313, 131830. DOI: 10.1016/j.matlet.2022.131830.
  • Deb, A.; Andrews, N. G.; Raghavan, V. Natural Polymer Functionalized Graphene Oxide for Co-Delivery of Anticancer Drugs: In-Vitro and in-Vivo. Int. J. Biol. Macromol. 2018, 113, 515–525. DOI: 10.1016/j.ijbiomac.2018.02.153.
  • Sivaraj, M.; Mukherjee, A.; Mariappan, R.; Mariadoss, A. V.; Jeyaraj, M. Polyorganophosphazene Stabilized Gold Nanoparticles for Intracellular Drug Delivery in Breast Carcinoma Cells. Process Biochem. 2018, 72, 152–161. DOI: 10.1016/j.procbio.2018.06.006.
  • Farshi Azhar, F.; Rezaei, M.; Olad, A.; Mousazadeh, H. The Effect of Montmorillonite in Graphene Oxide/Chitosan Nanocomposite on Controlled Release of Gemcitabine. Polym. Bull. 2022, 79, 5861–5883. DOI: 10.1007/s00289-021-03774-y.
  • García-García, G.; Fernández-Álvarez, F.; Cabeza, L.; Delgado, Á. V.; Melguizo, C.; Prados, J. C.; Arias, J. L. Gemcitabine-Loaded Magnetically Responsive Poly ($\Varepsilon$-Caprolactone) Nanoparticles against Breast Cancer. Polymers (Basel) 2020, 12, 2790. DOI: 10.3390/polym12122790.
  • Parsian, M.; Unsoy, G.; Mutlu, P.; Yalcin, S.; Tezcaner, A.; Gunduz, U. Loading of Gemcitabine on Chitosan Magnetic Nanoparticles Increases the Anti-Cancer Efficacy of the Drug. Eur. J. Pharmacol. 2016, 784, 121–128. DOI: 10.1016/j.ejphar.2016.05.016.
  • Astani, S.; Salehi, R.; Massoumi, B.; Massoudi, A. Co-Delivery of Cisplatin and Doxorubicin by Carboxylic Acid Functionalized Poly (Hydroxyethyl Methacrylate)/Reduced Graphene Nanocomposite for Combination Chemotherapy of Breast Cancer Cells. J. Biomater. Sci. Polym. Ed. 2021, 32, 657–677. DOI: 10.1080/09205063.2020.1855393.
  • Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M. A.; Ahmad, S. Na-Montmorillonite-Dispersed Sustainable Polymer Nanocomposite Hydrogel Films for Anticancer Drug Delivery. ACS Omega 2018, 3, 15809–15820. DOI: 10.1021/acsomega.8b01691.
  • Binu, N. M.; Prema, D.; Prakash, J.; Balagangadharan, K.; Balashanmugam, P.; Selvamurugan, N.; Venkatasubbu, G. D. Folic Acid Decorated PH Sensitive Polydopamine Coated Honeycomb Structured Nickel Oxide Nanoparticles for Targeted Delivery of Quercetin to Triple Negative Breast Cancer Cells. Colloids Surf, A 2021, 630, 127609. DOI: 10.1016/j.colsurfa.2021.127609.
  • Matiyani, M.; Rana, A.; Pal, M.; Rana, S.; Melkani, A. B.; Sahoo, N. G. Polymer Grafted Magnetic Graphene Oxide as a Potential Nanocarrier for PH-Responsive Delivery of Sparingly Soluble Quercetin against Breast Cancer Cells. RSC Adv. 2022, 12, 2574–2588. DOI: 10.1039/d1ra05382e.
  • Karimi Ghezeli, Z.; Hekmati, M.; Veisi, H. Synthesis of Imatinib-Loaded Chitosan-Modified Magnetic Nanoparticles as an anti-Cancer Agent for PH Responsive Targeted Drug Delivery. Appl. Organomet. Chem. 2019, 33, e4833. DOI: 10.1002/aoc.4833.
  • Alamer, N.; Meshkini, A.; Khoshtabiat, L.; Behnamsani, A. Synergizing Effects of Chemodynamic Therapy and Chemotherapy against Breast Cancer by Oxaliplatin-Loaded Polydopamine/BSA@ Copper Ferrite. J. Drug Delivery Sci. Technol. 2022, 72, 103391. DOI: 10.1016/j.jddst.2022.103391.
  • Taleblou, N.; Sirousazar, M.; Hassan, Z. M.; Khaligh, S. G. Capecitabine-Loaded anti-Cancer Nanocomposite Hydrogel Drug Delivery Systems: In Vitro and in Vivo Efficacy against the 4T1 Murine Breast Cancer Cells. J. Biomater. Sci. Polym. Ed. 2020, 31, 72–92. DOI: 10.1080/09205063.2019.1675225.
  • Amoli-Diva, M.; Sadighi-Bonabi, R.; Pourghazi, K.; Hadilou, N. Tunable Surface Plasmon Resonance–Based Remote Actuation of Bimetallic Core-Shell Nanoparticle-Coated Stimuli Responsive Polymer for Switchable Chemo-Photothermal Synergistic Cancer Therapy. J. Pharm. Sci. 2018, 107, 2618–2627. DOI: 10.1016/j.xphs.2018.05.025.
  • Dorniani, D.; Kura, A. U.; Hussein-Al-Ali, S. H.; Bin Hussein, M. Z.; Fakurazi, S.; Shaari, A. H.; Ahmad, Z. In Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System. Sci. World J. 2014, 2014, 1–11. DOI: 10.1155/2014/416354.
  • Hussein-Al-Ali, S. H.; Arulselvan, P.; Fakurazi, S.; Hussein, M. Z. The in Vitro Therapeutic Activity of Betulinic Acid Nanocomposite on Breast Cancer Cells (MCF-7) and Normal Fibroblast Cell (3T3). J. Mater. Sci. 2014, 49, 8171–8182. DOI: 10.1007/s10853-014-8526-3.
  • Hussein-Al-Ali, S. H.; Arulselvan, P.; Fakurazi, S.; Hussein, M. Z.; Dorniani, D. Arginine–Chitosan-and Arginine–Polyethylene Glycol-Conjugated Superparamagnetic Nanoparticles: Preparation, Cytotoxicity and Controlled-Release. J. Biomater. Appl. 2014, 29, 186–198. DOI: 10.1177/0885328213519691.
  • Momtazi, L.; Bagherifam, S.; Singh, G.; Hofgaard, A.; Hakkarainen, M.; Glomm, W. R.; Roos, N.; Mælandsmo, G. M.; Griffiths, G.; Nyström, B. Synthesis, Characterization, and Cellular Uptake of Magnetic Nanocarriers for Cancer Drug Delivery. J. Colloid Interface Sci. 2014, 433, 76–85. DOI: 10.1016/j.jcis.2014.07.013.
  • Murugan, C.; Venkatesan, S.; Kannan, S. Cancer Therapeutic Proficiency of Dual-Targeted Mesoporous Silica Nanocomposite Endorses Combination Drug Delivery. ACS Omega 2017, 2, 7959–7975. DOI: 10.1021/acsomega.7b00978.
  • Prabhu, S.; Ananthanarayanan, P.; Aziz, S. K.; Rai, S.; Mutalik, S.; Sadashiva, S. R. B. Enhanced Effect of Geldanamycin Nanocomposite against Breast Cancer Cells Growing in Vitro and as Xenograft with Vanquished Normal Cell Toxicity. Toxicol. Appl. Pharmacol. 2017, 320, 60–72. DOI: 10.1016/j.taap.2017.02.012.
  • Taherian, A.; Esfandiari, N.; Rouhani, S. Breast Cancer Drug Delivery by Novel Drug-Loaded Chitosan-Coated Magnetic Nanoparticles. Cancer Nano 2021, 12, 1–20. DOI: 10.1186/s12645-021-00086-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.