1,894
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances in Flexible Foam Pressure Sensors: Manufacturing, Characterization, and Applications – a Review

, , , &
Pages 449-489 | Received 05 Apr 2023, Accepted 17 Sep 2023, Published online: 12 Oct 2023

References

  • Su, Y.; Ma, K.; Mao, X.; Liu, M.; Zhang, X. Highly Compressible and Sensitive Flexible Piezoresistive Pressure Sensor Based on MWCNTs/Ti3C2Tx MXene @ Melamine Foam for Human Gesture Monitoring and Recognition. Nanomaterials (Basel) 2022, 12, 2225. DOI: 10.3390/nano12132225.
  • Li, Z.-X.; Gao, X.-Y.; Huang, P.; Li, Y.-Q.; Fu, S.-Y. A Flexible Carbonized Melamine Foam/Silicone/Epoxy Composite Pressure Sensor with Temperature and Voltage-Adjusted Piezoresistivity for Ultrawide Pressure Detection. J. Mater. Chem. A 2022, 10, 9114–9120. DOI: 10.1039/D1TA10965K.
  • Zhu, W.-B.; Luo, H.-S.; Tang, Z.-H.; Zhang, H.; Fan, T.; Wang, Y.-Y.; Huang, P.; Li, Y.-Q.; Fu, S.-Y. Ti3C2T x MXene/Bamboo Fiber/PDMS Pressure Sensor with Simultaneous Ultrawide Linear Sensing Range, Superb Environmental Stability, and Excellent Biocompatibility. ACS Sustainable Chem. Eng. 2022, 10, 3546–3556. DOI: 10.1021/acssuschemeng.1c07994.
  • Liu, M.-Y.; Zhao, X.-F.; Hang, C.-Z.; Zhu, L.-Y.; Wu, X.-Y.; Wen, X.-H.; Wang, J.-C.; Lu, H.-L. A Stretchable Pressure Sensor with Interlinked Interfaces Prepared by a Template-Free Process. Compos Part A Appl. Sci. Manuf. 2022, 162, 107144. DOI: 10.1016/j.compositesa.2022.107144.
  • Kurup, L. A.; Arthur, J. N.; Yambem, S. D. Highly Sensitive Capacitive Low-Pressure Graphene Porous Foam Sensors. ACS Appl. Electron. Mater. 2022, 4, 3962–3972. DOI: 10.1021/acsaelm.2c00616.
  • He, J.; Zhang, Y.; Zhou, R.; Meng, L.; Chen, T.; Mai, W.; Pan, C. Recent Advances of Wearable and Flexible Piezoresistivity Pressure Sensor Devices and Its Future Prospects. J. Materiomics 2020, 6, 86–101. DOI: 10.1016/j.jmat.2020.01.009.
  • Yu, Z.; Cai, G.; Liu, X.; Tang, D. Pressure-Based Biosensor Integrated with a Flexible Pressure Sensor and an Electrochromic Device for Visual Detection. Anal. Chem. 2021, 93, 2916–2925. DOI: 10.1021/acs.analchem.0c04501.
  • Huang, C.-B.; Witomska, S.; Aliprandi, A.; Stoeckel, M.-A.; Bonini, M.; Ciesielski, A.; Samorì, P. Molecule-Graphene Hybrid Materials with Tunable Mechanoresponse: Highly Sensitive Pressure Sensors for Health Monitoring. Adv. Mater. 2019, 31, e1804600. DOI: 10.1002/adma.201804600.
  • Garcia, C.; Trendafilova, I.; Guzman de Villoria, R.; Sanchez del Rio, J. Self-Powered Pressure Sensor Based on the Triboelectric Effect and Its Analysis Using Dynamic Mechanical Analysis. Nano Energy 2018, 50, 401–409. DOI: 10.1016/j.nanoen.2018.05.046.
  • Kou, H.; Zhang, L.; Tan, Q.; Liu, G.; Lv, W.; Lu, F.; Dong, H.; Xiong, J. Wireless Flexible Pressure Sensor Based on Micro-Patterned Graphene/PDMS Composite. Sens. Actuators A Phys. 2018, 277, 150–156. DOI: 10.1016/j.sna.2018.05.015.
  • Ha, K.-H.; Huh, H.; Li, Z.; Lu, N. Soft Capacitive Pressure Sensors: Trends, Challenges, and Perspectives. ACS Nano. 2022, 16, 3442–3448. DOI: 10.1021/acsnano.2c00308.
  • Ma, Z.; Zhang, K.; Yang, S.; Zhang, Y.; Chen, X.; Fu, Q.; Deng, H. High-Performance Capacitive Pressure Sensors Fabricated by Introducing Dielectric Filler and Conductive Filler into a Porous Dielectric Layer through a Biomimic Strategy. Compos. Sci. Technol. 2022, 227, 109595. DOI: 10.1016/j.compscitech.2022.109595.
  • Kurup, L. A.; Cole, C. M.; Arthur, J. N.; Yambem, S. D. Graphene Porous Foams for Capacitive Pressure Sensing. ACS Appl. Nano Mater. 2022, 5, 2973–2983. DOI: 10.1021/acsanm.2c00247.
  • Yu, H.; Guo, C.; Ye, X.; Pan, Y.; Tu, J.; Wu, Z.; Chen, Z.; Liu, X.; Huang, J.; Ren, Q.; Li, Y. Wide-Range Flexible Capacitive Pressure Sensors Based on Dielectrics with Various Porosity. Micromachines (Basel) 2022, 13, 1588. DOI: 10.3390/mi13101588.
  • Han, C.; Zhang, H.; Chen, Q.; Li, T.; Kong, L.; Zhao, H.; He, L. A Directional Piezoelectric Sensor Based on Anisotropic PVDF/MXene Hybrid Foam Enabled by Unidirectional Freezing. Chem. Eng. J. 2022, 450, 138280. DOI: 10.1016/j.cej.2022.138280.
  • Zhang, X.; Li, J.; Lin, J.; Li, W.; Chu, W.; Wang, X. Facile Fabrication of Carbon Ink-Decorated Melamine Foams for Efficient Piezoelectric Pressure Sensors. J. Mater. Sci. Mater. Electron. 2022, 33, 13731–13742. DOI: 10.1007/s10854-022-08306-6.
  • Chen, Q.; Gao, Q.; Wang, X.; Schubert, D. W.; Liu, X. Flexible, Conductive, and Anisotropic Thermoplastic Polyurethane/Polydopamine/MXene Foam for Piezoresistive Sensors and Motion Monitoring. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106838. DOI: 10.1016/j.compositesa.2022.106838.
  • Cai, B.; Wang, L.; Yu, F.; Jia, j.; Li, J.; Li, X.; Yang, X.; Jiang, Y.; Lü, W. Compressible Piezoresistive Pressure Sensor Based on Ag Nanowires Wrapped Conductive Carbonized Melamine Foam. Appl. Phys. A 2022, 128, 6. DOI: 10.1007/s00339-021-05143-y.
  • Bhatt, B. B.; Kumar, L.; Kushwaha, A.; Gupta, D. An Ultra-Compressible Piezoresistive Strain and Pressure Sensor Based on RGO-CNT-Melamine Foam Composite for Biomedical Sensing. Sens. Actuators A Phys. 2021, 331, 112875. DOI: 10.1016/j.sna.2021.112875.
  • Mu, C.; Li, J.; Song, Y.; Huang, W.; Ran, A.; Deng, K.; Huang, J.; Xie, W.; Sun, R.; Zhang, H. Enhanced Piezocapacitive Effect in CaCu3Ti4O12–Polydimethylsiloxane Composited Sponge for Ultrasensitive Flexible Capacitive Sensor. ACS Appl. Nano Mater. 2018, 1, 274–283. DOI: 10.1021/acsanm.7b00144.
  • Kang, M.; Kim, J.; Jang, B.; Chae, Y.; Kim, J.-H.; Ahn, J.-H. Graphene-Based Three-Dimensional Capacitive Touch Sensor for Wearable Electronics. ACS Nano. 2017, 11, 7950–7957. DOI: 10.1021/acsnano.7b02474.
  • Shehata, N.; Nair, R.; Boualayan, R.; Kandas, I.; Masrani, A.; Elnabawy, E.; Omran, N.; Gamal, M.; Hassanin, A. H. Stretchable Nanofibers of Polyvinylidenefluoride (PVDF)/Thermoplastic Polyurethane (TPU) Nanocomposite to Support Piezoelectric Response via Mechanical Elasticity. Sci. Rep. 2022, 12, 8335. DOI: 10.1038/s41598-022-11465-5.
  • Tran, M. T.; Tung, T. T.; Sachan, A.; Losic, D.; Castro, M.; Feller, J. F. 3D Sprayed Polyurethane Functionalized Graphene/Carbon Nanotubes Hybrid Architectures to Enhance the Piezo-Resistive Response of Quantum Resistive Pressure Sensors. Carbon N Y 2020, 168, 564–579. DOI: 10.1016/j.carbon.2020.05.086.
  • Offenzeller, C.; Knoll, M.; Jakoby, B.; Hilber, W. Embedded, Fully Spray-Coated Pressure Sensor Using a Capacitive Transducing Mechanism. Polymers (Basel) 2018, 10, 852. DOI: 10.3390/polym10080852.
  • Wu, Y.; Liu, H.; Chen, S.; Dong, X.; Wang, P.; Liu, S.; Lin, Y.; Wei, Y.; Liu, L. Channel Crack-Designed Gold@PU Sponge for Highly Elastic Piezoresistive Sensor with Excellent Detectability. ACS Appl. Mater. Interfaces. 2017, 9, 20098–20105. DOI: 10.1021/acsami.7b04605.
  • Du, C.; Zhang, Y.; Zhang, D.; Zhang, B.; Zhao, W. An in Situ Polymerized Polypyrrole/Halloysite Nanotube–Silver Nanoflower Based Flexible Wearable Pressure Sensor with a Large Measurement Range and High Sensitivity. J. Mater. Chem. C 2021, 9, 13172–13181. DOI: 10.1039/D1TC03135J.
  • Wang, Y.; Yue, Y.; Cheng, F.; Cheng, Y.; Ge, B.; Liu, N.; Gao, Y. Ti3C2Tx MXene-Based Flexible Piezoresistive Physical Sensors. ACS Nano. 2022, 16, 1734–1758. DOI: 10.1021/acsnano.1c09925.
  • Gong, M.; Yue, L.; Kong, J.; Lin, X.; Zhang, L.; Wang, J.; Wang, D. Knittable and Sewable Spandex Yarn with Nacre-Mimetic Composite Coating for Wearable Health Monitoring and Thermo- and Antibacterial Therapies. ACS Appl. Mater. Interfaces. 2021, 13, 9053–9063. DOI: 10.1021/acsami.1c00864.
  • Kang, F.; Zhang, W.; Liu, M.; Liu, F.; Jia, Z.; Jia, D. Highly Flexible and Sensitive Ti3C2 MXene@Polyurethane Composites for Piezoresistive Pressure Sensor. J. Mater. Sci. 2022, 57, 12894–12902. DOI: 10.1007/s10853-022-07387-2.
  • Yan, Q.; Xie, W.; Zhou, M.; Fu, H. An Ultrasensitive and Highly Compressive Piezoresistive Sensor Based on a Biopolyol-Reinforced Polyurethane Sponge Coated with Silver Nanoparticles and Carbon Nanotubes/Cellulose Nanocrystals. J. Mater. Chem. C 2020, 8, 16603–16614. DOI: 10.1039/D0TC04141F.
  • Paghi, A.; Corsi, M.; Corso, S.; Mariani, S.; Barillaro, G. In Situ Controlled and Conformal Coating of Polydimethylsiloxane Foams with Silver Nanoparticle Networks with Tunable Piezo-Resistive Properties. Nanoscale Horiz. 2022, 7, 425–436. DOI: 10.1039/D1NH00648G.
  • Hu, T.; Xuan, S.; Ding, L.; Gong, X. Stretchable and Magneto-Sensitive Strain Sensor Based on Silver Nanowire-Polyurethane Sponge Enhanced Magnetorheological Elastomer. Mater. Des. 2018, 156, 528–537. DOI: 10.1016/j.matdes.2018.07.024.
  • Fei, Y.; Jiang, R.; Fang, W.; Liu, T.; Saeb, M. R.; Hejna, A.; Ehsani, M.; Barczewski, M.; Sajadi, S. M.; Chen, F.; Kuang, T. Highly Sensitive Large Strain Cellulose/Multiwalled Carbon Nanotubes (MWCNTs)/Thermoplastic Polyurethane (TPU) Nanocomposite Foams: From Design to Performance Evaluation. J. Supercrit. Fluids 2022, 188, 105653. DOI: 10.1016/j.supflu.2022.105653.
  • Zhang, T.; Zhang, W.; Li, Y.; Hu, X.; Yuan, H.; Jiang, T. High-Efficient Flexible Pressure Sensor Based on Nanofibers and Carbon Nanotubes for Artificial Electronic Skin and Human Motion Monitoring. J. Porous Mater. 2023. DOI: 10.1007/s10934-023-01465-9.
  • Sengupta, D.; Kamat, A. M.; Smit, Q.; Jayawardhana, B.; Kottapalli, A. G. P. Piezoresistive 3D Graphene–PDMS Spongy Pressure Sensors for IoT Enabled Wearables and Smart Products. Flex. Print. Electron. 2022, 7, 015004. DOI: 10.1088/2058-8585/ac4d0e.
  • Luo, R.; Cui, Y.; Li, H.; Wu, Y.; Du, b.; Zhou, S. A Sponge-Like High Sensitivity Wearable Piezoresistive Pressure Sensor Based on Fragmented Graphene Aerogel/Polydimethylsiloxane. SSRN J. 2022, 26, 2779–2787. DOI: 10.2139/ssrn.4138054.
  • Zhu, H.; Dai, S.; Cao, J.; Bai, H.; Zhong, Y.; Zhang, Z.; Cheng, G.; Yuan, N.; Ding, J. A High-Performance Textile Pressure Sensor Based on Carbon Black/Carbon Nanotube-Polyurethane Coated Fabrics with Porous Structure for Monitoring Human Motion. Mater. Today Commun. 2022, 33, 104541. DOI: 10.1016/j.mtcomm.2022.104541.
  • Nabeel, M.; Kuzsella, L.; Viskolcz, B.; Kollar, M.; Fiser, B.; Vanyorek, L. Synergistic Effect of Carbon Nanotubes and Carbon Black as Nanofillers of Silicone Rubber Pressure Sensors. Arabian J. Chem. 2023, 16, 104594. DOI: 10.1016/j.arabjc.2023.104594.
  • Huang, W.; Dai, K.; Zhai, Y.; Liu, H.; Zhan, P.; Gao, J.; Zheng, G.; Liu, C.; Shen, C. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability. ACS Appl. Mater. Interfaces. 2017, 9, 42266–42277. DOI: 10.1021/acsami.7b16975.
  • Lee, D.; Kim, J.; Kim, H.; Heo, H.; Park, K.; Lee, Y. High-Performance Transparent Pressure Sensors Based on Sea-Urchin Shaped Metal Nanoparticles and Polyurethane Microdome Arrays for Real-Time Monitoring. Nanoscale 2018, 10, 18812–18820. DOI: 10.1039/C8NR05843A.
  • Cheng, Y.; Wang, R.; Zhai, H.; Sun, J. Stretchable Electronic Skin Based on Silver Nanowire Composite Fiber Electrodes for Sensing Pressure, Proximity, and Multidirectional Strain. Nanoscale 2017, 9, 3834–3842. DOI: 10.1039/C7NR00121E.
  • Chen, X.; Liu, H.; Zheng, Y.; Zhai, Y.; Liu, X.; Liu, C.; Mi, L.; Guo, Z.; Shen, C. Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor. ACS Appl. Mater. Interfaces. 2019, 11, 42594–42606. DOI: 10.1021/acsami.9b14688.
  • He, Y.; Zhou, M.; Mahmoud, M. H. H.; Lu, X.; He, G.; Zhang, L.; Huang, M.; Elnaggar, A. Y.; Lei, Q.; Liu, H.; et al. Multifunctional Wearable Strain/Pressure Sensor Based on Conductive Carbon Nanotubes/Silk Nonwoven Fabric with High Durability and Low Detection Limit. Adv. Compos. Hybrid Mater. 2022, 5, 1939–1950. DOI: 10.1007/s42114-022-00525-z.
  • Song, Z.; Li, W.; Bao, Y.; Wang, W.; Liu, Z.; Han, F.; Han, D.; Niu, L. Bioinspired Microstructured Pressure Sensor Based on a Janus Graphene Film for Monitoring Vital Signs and Cardiovascular Assessment. Adv. Elect. Materials 2018, 4, 1800252. DOI: 10.1002/aelm.201800252.
  • Lu, Y.; Tian, M.; Sun, X.; Pan, N.; Chen, F.; Zhu, S.; Zhang, X.; Chen, S. Highly Sensitive Wearable 3D Piezoresistive Pressure Sensors Based on Graphene Coated Isotropic Non-Woven Substrate. Compos Part A Appl. Sci. Manuf. 2019, 117, 202–210. DOI: 10.1016/j.compositesa.2018.11.023.
  • Zhai, W.; Xia, Q.; Zhou, K.; Yue, X.; Ren, M.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Multifunctional Flexible Carbon Black/Polydimethylsiloxane Piezoresistive Sensor with Ultrahigh Linear Range, Excellent Durability and Oil/Water Separation Capability. Chem. Eng. J. 2019, 372, 373–382. DOI: 10.1016/j.cej.2019.04.142.
  • Shen, X.; Zheng, L.; Tang, R.; Nie, K.; Wang, Z.; Jin, C.; Sun, Q. Double-Network Hierarchical-Porous Piezoresistive Nanocomposite Hydrogel Sensors Based on Compressive Cellulosic Hydrogels Deposited with Silver Nanoparticles. ACS Sustainable Chem. Eng. 2020, 8, 7480–7488. DOI: 10.1021/acssuschemeng.0c02035.
  • Zhu, G. J.; Ren, P. G.; Wang, J.; Duan, Q.; Ren, F.; Xia, W. M.; Yan, D. X. A Highly Sensitive and Broad-Range Pressure Sensor Based on Polyurethane Mesodome Arrays Embedded with Silver Nanowires. ACS Appl. Mater. Interfaces. 2020, 12, 19988–19999. DOI: 10.1021/acsami.0c03697.
  • Luo, Q.; Zheng, H.; Hu, Y.; Zhuo, H.; Chen, Z.; Peng, X.; Zhong, L. Carbon Nanotube/Chitosan-Based Elastic Carbon Aerogel for Pressure Sensing. Ind. Eng. Chem. Res. 2019, 58, 17768–17775. DOI: 10.1021/acs.iecr.9b02847.
  • Zhao, L.; Jiang, B.; Huang, Y. Self-Healable Polysiloxane/Graphene Nanocomposite and Its Application in Pressure Sensor. J. Mater. Sci. 2019, 54, 5472–5483. DOI: 10.1007/s10853-018-03233-6.
  • Huang, J.; Zhao, M.; Cai, Y.; Zimniewska, M.; Li, D.; Wei, Q. A Dual‐Mode Wearable Sensor Based on Bacterial Cellulose Reinforced Hydrogels for Highly Sensitive Strain/Pressure Sensing. Adv. Elect. Materials 2020, 6, 1900934. DOI: 10.1002/aelm.201900934.
  • Tan, P.; Li, H.; Wang, J.; Gopinath, S. C. B. Silver Nanoparticle in Biosensor and Bioimaging: Clinical Perspectives. Biotechnol. Appl. Biochem. 2020, 68, bab.2045. DOI: 10.1002/bab.2045.
  • Fu, D.; Wang, R.; Wang, Y.; Sun, Q.; Cheng, C.; Guo, X.; Yang, R. An Easily Processable Silver Nanowires-Dual-Cellulose Conductive Paper for Versatile Flexible Pressure Sensors. Carbohydr. Polym. 2022, 283, 119135. DOI: 10.1016/j.carbpol.2022.119135.
  • Venkataraman, A.; Amadi, E. V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14, 220. DOI: 10.1186/s11671-019-3046-3.
  • He, J.; Xiao, P.; Lu, W.; Shi, J.; Zhang, L.; Liang, Y.; Pan, C.; Kuo, S.-W.; Chen, T. A Universal High Accuracy Wearable Pulse Monitoring System via High Sensitivity and Large Linearity Graphene Pressure Sensor. Nano Energy 2019, 59, 422–433. DOI: 10.1016/j.nanoen.2019.02.036.
  • Gupta, S.; Tai, N.-H. Carbon Materials and Their Composites for Electromagnetic Interference Shielding Effectiveness in X-Band. Carbon N Y 2019, 152, 159–187. DOI: 10.1016/j.carbon.2019.06.002.
  • Han, X.; Lv, Z.; Ran, F.; Dai, L.; Li, C.; Si, C. Green and Stable Piezoresistive Pressure Sensor Based on Lignin-Silver Hybrid Nanoparticles/Polyvinyl Alcohol Hydrogel. Int. J. Biol. Macromol. 2021, 176, 78–86. DOI: 10.1016/j.ijbiomac.2021.02.055.
  • Xia, J.; Wang, X.; Zhang, J.; Kong, C.; Huang, W.; Zhang, X. Flexible Dual-Mechanism Pressure Sensor Based on Ag Nanowire Electrodes for Nondestructive Grading and Quality Monitoring of Fruits. ACS Appl. Nano Mater. 2022, 5, 10652–10662. DOI: 10.1021/acsanm.2c01968.
  • Nela, L.; Tang, J.; Cao, Q.; Tulevski, G.; Han, S.-J. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin. Nano Lett. 2018, 18, 2054–2059. DOI: 10.1021/acs.nanolett.8b00063.
  • Feng, C.; Yi, Z.; Jin, X.; Seraji, S. M.; Dong, Y.; Kong, L.; Salim, N. Solvent Crystallization-Induced Porous Polyurethane/Graphene Composite Foams for Pressure Sensing. Compos B Eng. 2020, 194, 108065. DOI: 10.1016/j.compositesb.2020.108065.
  • Liu, Y.; Zheng, H.; Liu, M. High Performance Strain Sensors Based on Chitosan/Carbon Black Composite Sponges. Mater. Des. 2018, 141, 276–285. DOI: 10.1016/j.matdes.2017.12.046.
  • Lei, X.; Ma, L.; Li, Y.; Cheng, Y.; Cheng, G. J.; Liu, F. Highly Sensitive and Wide-Range Flexible Pressure Sensor Based on Carbon Nanotubes-Coated Polydimethylsiloxane Foam. Mater. Lett. 2022, 308, 131151. DOI: 10.1016/j.matlet.2021.131151.
  • Hwang, J.; Kim, Y.; Yang, H.; Oh, J. H. Fabrication of Hierarchically Porous Structured PDMS Composites and Their Application as a Flexible Capacitive Pressure Sensor. Compos B Eng. 2021, 211, 108607. DOI: 10.1016/j.compositesb.2021.108607.
  • Chhetry, A.; Sharma, S.; Yoon, H.; Ko, S.; Park, J. Y. Enhanced Sensitivity of Capacitive Pressure and Strain Based on CaCu3Ti4O12 Wrapped Hybrid Sponge for Wearable Applications. Adv. Funct. Mater. 2020, 30, 1910020. DOI: 10.1002/adfm.201910020.
  • Li, R.; Zhou, Q.; Bi, Y.; Cao, S.; Xia, X.; Yang, A.; Li, S.; Xiao, X. Research Progress of Flexible Capacitive Pressure Sensor for Sensitivity Enhancement Approaches. Sens. Actuators A Phys. 2021, 321, 112425. DOI: 10.1016/j.sna.2020.112425.
  • Yoon, J. I.; Choi, K. S.; Chang, S. P. A Novel Means of Fabricating Microporous Structures for the Dielectric Layers of Capacitive Pressure Sensor. Microelectron. Eng. 2017, 179, 60–66. DOI: 10.1016/j.mee.2017.04.028.
  • Wan, S.; Bi, H.; Zhou, Y.; Xie, X.; Su, S.; Yin, K.; Sun, L. Graphene Oxide as High-Performance Dielectric Materials for Capacitive Pressure Sensors. Carbon N. Y. 2017, 114, 209–216. DOI: 10.1016/j.carbon.2016.12.023.
  • Kwon, D.; Lee, T.-I.; Shim, J.; Ryu, S.; Kim, M. S.; Kim, S.; Kim, T.-S.; Park, I. Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Appl. Mater. Interfaces. 2016, 8, 16922–16931. DOI: 10.1021/acsami.6b04225.
  • Xu, D.; Zhang, H.; Pu, L.; Li, L. Fabrication of Poly(Vinylidene Fluoride)/Multiwalled Carbon Nanotube Nanocomposite Foam via Supercritical Fluid Carbon Dioxide: Synergistic Enhancement of Piezoelectric and Mechanical Properties. Compos Sci. Technol. 2020, 192, 108108. DOI: 10.1016/j.compscitech.2020.108108.
  • Dai, S.-W.; Gu, Y.-L.; Zhao, L.; Zhang, W.; Gao, C.-H.; Wu, Y.-X.; Shen, S.-C.; Zhang, C.; Kong, T.-T.; Li, Y.-T.; et al. Bamboo-Inspired Mechanically Flexible and Electrically Conductive Polydimethylsiloxane Foam Materials with Designed Hierarchical Pore Structures for Ultra-Sensitive and Reliable Piezoresistive Pressure Sensor. Compos B Eng. 2021, 225, 109243. DOI: 10.1016/j.compositesb.2021.109243.
  • Kim, D. H.; Jung, Y.; Jung, K.; Kwak, D. H.; Park, D. M.; Shin, M. G.; Tak, H. J.; Ko, J. S. Hollow Polydimethylsiloxane (PDMS) Foam with a 3D Interconnected Network for Highly Sensitive Capacitive Pressure Sensors. Micro Nano Syst. Lett. 2020, 8, 24. DOI: 10.1186/s40486-020-00127-8.
  • Xu, M.; Gao, Y.; Yu, G.; Lu, C.; Tan, J.; Xuan, F. Flexible Pressure Sensor Using Carbon Nanotube-Wrapped Polydimethylsiloxane Microspheres for Tactile Sensing. Sens. Actuators A Phys. 2018, 284, 260–265. DOI: 10.1016/j.sna.2018.10.040.
  • Xiong, Y.; Zhu, Y.; Liu, X.; Zhu, P.; Hu, Y.; Sun, R.; Wong, C.-P. A Flexible Pressure Sensor Based on Melamine Foam Capped by Copper Nanowires and Reduced Graphene Oxide. Mater. Today Commun. 2020, 24, 100970. DOI: 10.1016/j.mtcomm.2020.100970.
  • Veeralingam, S.; Praveen, S.; Vemula, M.; Badhulika, S. One-Step Synthesis of Carbon-Doped PPy Nanoparticles Interspersed in 3D Porous Melamine Foam as a High-Performance Piezoresistive Pressure, Strain, and Breath Sensor. Mater. Chem. Front. 2022, 6, 570–579. DOI: 10.1039/D1QM01427G.
  • Zhong, A.; Li, J.; Zhang, Y.; Zhang, F.; Wang, T.; Zhang, G.; Sun, R.; Wong, C.-P. Low Temperature Microwave Fabrication of Three-Dimensional Graphene/Polyimide Foams with Flexibility Strain Responsivity. Compos Part A Appl. Sci. Manuf. 2020, 137, 105995. DOI: 10.1016/j.compositesa.2020.105995.
  • Yang, H.; Shang, J.-C.; Wang, W.-F.; Yang, Y.-F.; Yuan, Y.-N.; Lei, H.-S.; Fang, D.-N. Polyurethane Sponges-Based Ultrasensitive Pressure Sensor via Bioinspired Microstructure Generated by Pre-Strain Strategy. Compos Sci. Technol. 2022, 221, 109308. DOI: 10.1016/j.compscitech.2022.109308.
  • Zhu, G.; Li, H.; Peng, M.; Zhao, G.; Chen, J.; Zhu, Y. Highly-Stretchable Porous Thermoplastic Polyurethane/Carbon Nanotubes Composites as a Multimodal Sensor. Carbon N. Y. 2022, 195, 364–371. DOI: 10.1016/j.carbon.2022.04.033.
  • Wang, T.; Li, J.; Zhang, Y.; Liu, F.; Zhang, B.; Wang, Y.; Jiang, R.; Zhang, G.; Sun, R.; Wong, C. Highly Ordered 3D Porous Graphene Sponge for Wearable Piezoresistive Pressure Sensor Applications. Chemistry 2019, 25, 6378–6384. DOI: 10.1002/chem.201900014.
  • Jothi, L.; Nageswaran, G. Plasma Modified Polymeric Materials for Biosensors/Biodevice Applications. In Non-Thermal Plasma Technology for Polymeric Materials; Elsevier: Oxford, UK, 2019; pp 409–437. DOI: 10.1016/B978-0-12-813152-7.00015-9.
  • Bélanger, M.-C.; Marois, Y. Hemocompatibility, Biocompatibility, Inflammatory and in Vivo Studies of Primary Reference Materials Low-Density Polyethylene and Polydimethylsiloxane: A Review. J. Biomed. Mater. Res. 2001, 58, 467–477. DOI: 10.1002/jbm.1043.
  • Lötters, J. C.; Olthuis, W.; Veltink, P. H.; Bergveld, P. The Mechanical Properties of the Rubber Elastic Polymer Polydimethylsiloxane for Sensor Applications. J. Micromech. Microeng. 1997, 7, 145–147. DOI: 10.1088/0960-1317/7/3/017.
  • Mata, A.; Fleischman, A. J.; Roy, S. Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. Biomed. Microdevices. 2005, 7, 281–293. DOI: 10.1007/s10544-005-6070-2.
  • Wang, Q.; Chen, A.; Gu, H.; Qin, G.; Zhang, J.; Xu, J.; Jiang, G.; Liu, W.; Zhang, Z.; Huang, H. Highly Interconnected Porous PDMS/CNTs Sandwich Sponges with anti-Icing/Deicing Microstructured Surfaces. J. Mater. Sci. 2021, 56, 11723–11735. DOI: 10.1007/s10853-021-06052-4.
  • Zhou, L.; Rada, J.; Zhang, H.; Song, H.; Mirniaharikandi, S.; Ooi, B. S.; Gan, Q. Sustainable and Inexpensive Polydimethylsiloxane Sponges for Daytime Radiative Cooling. Adv. Sci. (Weinh) 2021, 8, e2102502. DOI: 10.1002/advs.202102502.
  • Pharino, U.; Sinsanong, Y.; Pongampai, S.; Charoonsuk, T.; Pakawanit, P.; Sriphan, S.; Vittayakorn, N.; Vittayakorn, W. Influence of Pore Morphologies on the Mechanical and Tribo-Electrical Performance of Polydimethylsiloxane Sponge Fabricated via Commercial Seasoning Templates. Radiat. Phys. Chem. 2021, 189, 109720. DOI: 10.1016/j.radphyschem.2021.109720.
  • Pruvost, M.; Smit, W. J.; Monteux, C.; Poulin, P.; Colin, A. Polymeric Foams for Flexible and Highly Sensitive Low-Pressure Capacitive Sensors. Npj Flex. Electron. 2019, 3, 7. DOI: 10.1038/s41528-019-0052-6.
  • Wang, H.; Zhang, R.; Yuan, D.; Xu, S.; Wang, L. Gas Foaming Guided Fabrication of 3D Porous Plasmonic Nanoplatform with Broadband Absorption, Tunable Shape, Excellent Stability, and High Photothermal Efficiency for Solar Water Purification. Adv. Funct. Mater. 2020, 30, 2003995. DOI: 10.1002/adfm.202003995.
  • Drozdov, A. D.; Claville Christiansen, J. The Effect of Porosity on Elastic Moduli of Polymer Foams. J. Appl. Polymer Sci. 2020, 137, 48449. DOI: 10.1002/app.48449.
  • Liu, C.; Le, L.; Zhang, M.; Ding, J. Tunable Large‐Scale Compressive Strain Sensor Based on Carbon Nanotube/Polydimethylsiloxane Foam Composites by Additive Manufacturing. Adv. Eng. Mater. 2022, 24, 2101337. DOI: 10.1002/adem.202101337.
  • Timusk, M.; Nigol, I. A.; Vlassov, S.; Oras, S.; Kangur, T.; Linarts, A.; Šutka, A. Low-Density PDMS Foams by Controlled Destabilization of Thixotropic Emulsions. J. Colloid Interface Sci. 2022, 626, 265–275. DOI: 10.1016/j.jcis.2022.06.150.
  • García-Valverde, M.; Chatzimitakos, T.; Lucena, R.; Cárdenas, S.; Stalikas, C. Melamine Sponge Functionalized with Urea-Formaldehyde Co-Oligomers as a Sorbent for the Solid-Phase Extraction of Hydrophobic Analytes. Molecules 2018, 23, 2595. DOI: 10.3390/molecules23102595.
  • Khan, M. R. R.; An, T. K.; Lee, H. S. A Battery-Free, Chipless, Highly Sensitive LC Pressure Sensor Tag Using PEDOT: PSS and Melamine Foam. IEEE Sensors J. 2021, 21, 2184–2193. DOI: 10.1109/JSEN.2020.3021076.
  • Cui, W.; Li, X.; Li, X.; Si, T.; Lu, L.; Ma, T.; Wang, Q. Thermal Performance of Modified Melamine Foam/Graphene/Paraffin Wax Composite Phase Change Materials for Solar-Thermal Energy Conversion and Storage. J Clean Prod 2022, 367, 133031. DOI: 10.1016/j.jclepro.2022.133031.
  • Yan, L.; Fu, L.; Chen, Y.; Tian, H.; Xiang, A.; Rajulu, A. V. Improved Thermal Stability and Flame Resistance of Flexible Polyimide Foams by Vermiculite Reinforcement. J. Appl. Polym. Sci. 2017, 134, 44828. DOI: 10.1002/app.44828.
  • Gu, W.; Wang, G.; Zhou, M.; Zhang, T.; Ji, G. Polyimide-Based Foams: Fabrication and Multifunctional Applications. ACS Appl. Mater. Interfaces. 2020, 12, 48246–48258. DOI: 10.1021/acsami.0c15771.
  • Zhu, Z.; Yao, H.; Dong, J.; Qian, Z.; Dong, W.; Long, D. High-Mechanical-Strength Polyimide Aerogels Crosslinked with 4, 4′-Oxydianiline-Functionalized Carbon Nanotubes. Carbon N Y 2019, 144, 24–31. DOI: 10.1016/j.carbon.2018.11.057.
  • Pan, L.-Y.; Shen, Y.-X.; Zhan, M.-S.; Wang, K.; Gao, D.-L. Visualization Study of Foaming Process for Polyimide Foams and Its Reinforced Foams. Polym. Compos. 2008, 31, NA–NA. DOI: 10.1002/pc.20764.
  • Li, Y.; Liu, X.-Y.; Zhan, M.-S.; Wang, K. Effects of 3,4′-Oxydianiline on the Structures and Properties of a Novel Aromatic Polyimide Foam. J. Appl. Polym. Sci. 2012, 125, 4128–4134. DOI: 10.1002/app.35683.
  • Liu, H.; Gao, J.; Huang, W.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers. Nanoscale 2016, 8, 12977–12989. DOI: 10.1039/C6NR02216B.
  • Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Thermoplastic Elastomer Nanocomposites at Ultralow Graphene Loading Levels for Strain Sensor Applications. J. Mater. Chem. C 2016, 4, 157–166. DOI: 10.1039/C5TC02751A.
  • Lan, Y.; Liu, H.; Cao, X.; Zhao, S.; Dai, K.; Yan, X.; Zheng, G.; Liu, C.; Shen, C.; Guo, Z. Electrically Conductive Thermoplastic Polyurethane/Polypropylene Nanocomposites with Selectively Distributed Graphene. Polymer (Guildf) 2016, 97, 11–19. DOI: 10.1016/j.polymer.2016.05.017.
  • Yilgör, I.; Yilgör, E.; Wilkes, G. L. Critical Parameters in Designing Segmented Polyurethanes and Their Effect on Morphology and Properties: A Comprehensive Review. Polymer (Guildf) 2015, 58, A1–A36. DOI: 10.1016/j.polymer.2014.12.014.
  • Soto, M.; Sebastián, R. M.; Marquet, J. Photochemical Activation of Extremely Weak Nucleophiles: Highly Fluorinated Urethanes and Polyurethanes from Polyfluoro Alcohols. J. Org. Chem. 2014, 79, 5019–5027. DOI: 10.1021/jo5005789.
  • Oppon, C.; Hackney, P. M.; Shyha, I.; Birkett, M. Effect of Varying Mixing Ratios and Pre-Heat Temperature on the Mechanical Properties of Polyurethane (PU) Foam. Proc. Eng. 2015, 132, 701–708. DOI: 10.1016/j.proeng.2015.12.550.
  • Chen, K.-S.; Leon Yu, T.; Chen, Y.-S.; Lin, T.-L.; Liu, W.-J. Soft-and Hard-Segment Phase Segregation of Polyester-Based Polyurethane. J. Polym. Res. 2001, 8, 99–109. DOI: 10.1007/s10965-006-0139-3.
  • Tang, Y. W.; Labow, R. S.; Santerre, J. P. Enzyme-Induced Biodegradation of Polycarbonate Polyurethanes: Dependence on Hard-Segment Concentration. J. Biomed. Mater. Res. 2001, 56, 516–528. DOI: 10.1002/1097-4636.
  • Verdolotti, L.; Di Caprio, M. R.; Lavorgna, M.; Buonocore, G. G. Polyurethane Nanocomposite Foams. In Polyurethane Polymers; Jackson, D., Ed.; Elsevier: Oxford, UK, 2017; pp 277–310. DOI: 10.1016/B978-0-12-804065-2.00009-7.
  • Ng, Z. C.; Roslan, R. A.; Lau, W. J.; Gürsoy, M.; Karaman, M.; Jullok, N.; Ismail, A. F. A Green Approach to Modify Surface Properties of Polyurethane Foam for Enhanced Oil Absorption. Polymers (Basel) 2020, 12, 1883. DOI: 10.3390/polym12091883.
  • Tay, R. Y.; Li, H.; Lin, J.; Wang, H.; Lim, J. S. K.; Chen, S.; Leong, W. L.; Tsang, S. H.; Teo, E. H. T. Lightweight, Superelastic Boron Nitride/Polydimethylsiloxane Foam as Air Dielectric Substitute for Multifunctional Capacitive Sensor Applications. Adv. Funct. Materials 2020, 30, 1909604. DOI: 10.1002/adfm.201909604.
  • Grande, J. B.; Fawcett, A. S.; McLaughlin, A. J.; Gonzaga, F.; Bender, T. P.; Brook, M. A. Anhydrous Formation of Foamed Silicone Elastomers Using the Piers–Rubinsztajn Reaction. Polymer (Guildf) 2012, 53, 3135–3142. DOI: 10.1016/j.polymer.2012.05.033.
  • Mu, L.; Yue, X.; Hao, B.; Wang, R.; Ma, P.-C. Facile Preparation of Melamine Foam with Superhydrophobic Performance and Its System Integration with Prototype Equipment for the Clean-up of Oil Spills on Water Surface. Sci. Total Environ. 2022, 833, 155184. DOI: 10.1016/j.scitotenv.2022.155184.
  • Patel, P. S.; Shepherd, D. E.; Hukins, D. W. Compressive Properties of Commercially Available Polyurethane Foams as Mechanical Models for Osteoporotic Human Cancellous Bone. BMC Musculoskelet. Disord. 2008, 9, 137. DOI: 10.1186/1471-2474-9-137.
  • Cuenca, J.; Van der Kelen, C.; Göransson, P. A General Methodology for Inverse Estimation of the Elastic and Anelastic Properties of Anisotropic Open-Cell Porous Materials—with Application to a Melamine Foam. J. Appl. Phys. 2014, 115, 84904. DOI: 10.1063/1.4865789.
  • Silcox, R.; Bolton, J. S.; Kim, N.; Cano, R.; Howerton, B. Development of Polyimide Foam for Aircraft Sidewall Applications. In 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition; 213. 2013. DOI: 10.2514/6.2013-213.
  • Zhang, H.; Fan, X.; Chen, W.; Wang, Y.; Liu, C.; Cui, B.; Li, G.; Song, J.; Zhao, D.; Wang, D.; et al. A Simple and Green Strategy for Preparing Flexible Thermoplastic Polyimide Foams with Exceptional Mechanical, Thermal-Insulating Properties, and Temperature Resistance for High-Temperature Lightweight Composite Sandwich Structures. Compos B Eng. 2022, 228, 109405. DOI: 10.1016/j.compositesb.2021.109405.
  • Teixeira, I.; Castro, I.; Carvalho, V.; Rodrigues, C.; Souza, A.; Lima, R.; Teixeira, S.; Ribeiro, J; University of Minho, Mechanical Engineering Department, University of Minho, Campus de Azurém, Guimarães, Portugal. Polydimethylsiloxane Mechanical Properties: A Systematic Review. AIMSMATES 2021, 8, 952–973. DOI: 10.3934/matersci.2021058.
  • Jia, H.; Kong, Q.-Q.; Liu, Z.; Wei, X.-X.; Li, X.-M.; Chen, J.-P.; Li, F.; Yang, X.; Sun, G.-H.; Chen, C.-M. 3D Graphene/Carbon Nanotubes/Polydimethylsiloxane Composites as High-Performance Electromagnetic Shielding Material in X-Band. Compos Part A Appl. Sci. Manuf. 2020, 129, 105712. DOI: 10.1016/j.compositesa.2019.105712.
  • Cao, X.; Liu, H.; Cai, J.; Chen, L.; Yang, X.; Liu, M. Chinese Ink Coated Melamine Foam with Joule Heating and Photothermal Effect for Strain Sensor and Seawater Desalination. Compos Part A Appl. Sci. Manuf. 2021, 149, 106535. DOI: 10.1016/j.compositesa.2021.106535.
  • Li, C.; Ma, H.; Zhou, Z.; Xu, W.; Ren, F.; Yang, X. Preparation and Properties of Melamine-Formaldehyde Rigid Closed-Cell Foam Toughened by Ethylene Glycol/Carbon Fiber. Cell. Polym. 2021, 40, 55–72. DOI: 10.1177/0262489320929232.
  • Shi, Y.; Hu, A.; Wang, Z.; Li, K.; Yang, S. Closed-Cell Rigid Polyimide Foams for High-Temperature Applications: The Effect of Structure on Combined Properties. Polymers (Basel) 2021, 13, 4434. DOI: 10.3390/polym13244434.
  • Xu, M.; Yang, L.; Zhang, L.; Yan, S. Innovative Technologies for Printing and Packaging; Springer Nature, 2023; Vol. 991.
  • Fan, L.; Wang, R.; Zhang, Q.; Liu, S.; He, R.; Zhang, R.; Shen, M.; Xiang, X.; Zhou, Y. In Situ Self-Foaming Preparation of Hydrophobic Polyurethane Foams for Oil/Water Separation. New J. Chem. 2021, 45, 13902–13908. DOI: 10.1039/D0NJ05208F.
  • Borreguero, A. M.; Zamora, J.; Garrido, I.; Carmona, M.; Rodríguez, J. F. Improving the Hydrophilicity of Flexible Polyurethane Foams with Sodium Acrylate Polymer. Materials (Basel, Switzerland) 2021, 14, 2197. DOI: 10.3390/ma14092197.
  • Trantidou, T.; Elani, Y.; Parsons, E.; Ces, O. Hydrophilic Surface Modification of PDMS for Droplet Microfluidics Using a Simple, Quick, and Robust Method via PVA Deposition. Microsyst. Nanoeng. 2017, 3, 16091. DOI: 10.1038/micronano.2016.91.
  • Park, E. J.; Cho, Y. K.; Kim, D. H.; Jeong, M.-G.; Kim, Y. H.; Kim, Y. D. Hydrophobic Polydimethylsiloxane (PDMS) Coating of Mesoporous Silica and Its Use as a Preconcentrating Agent of Gas Analytes. Langmuir 2014, 30, 10256–10262. DOI: 10.1021/la502915r.
  • Li, Q.; Sun, X.; Li, Y.; Xu, L. Hydrophobic Melamine Foam as the Solvent Holder for Liquid–Liquid Microextraction. Talanta 2019, 191, 469–478. DOI: 10.1016/j.talanta.2018.09.003.
  • Akhiani, A. R.; Cornelis Metselaar, H. S.; Ang, B. C.; Mehrali, M.; Mehrali, M. Highly Hydrophobic Silanized Melamine Foam for Facile and Uniform Assembly of Graphene Nanoplatelet towards Efficient Light-to-Thermal Energy Storage. Mater. Today Energy 2022, 28, 101077. DOI: 10.1016/j.mtener.2022.101077.
  • Kausar, A. Emerging Polyimide and Graphene Derived Nanocomposite Foam: Research and Technical Tendencies. J. Macromol. Sci. Part A 2021, 58, 643–658. DOI: 10.1080/10601325.2021.1934011.
  • Gama, N.; Ferreira, A.; Barros-Timmons, A. Polyurethane Foams: Past, Present, and Future. Materials (Basel) 2018, 11, 1841. DOI: 10.3390/ma11101841.
  • Hu, W.-J.; Xia, Q.-Q.; Pan, H.-T.; Chen, H.-Y.; Qu, Y.-X.; Chen, Z.-Y.; Zhang, G.-D.; Zhao, L.; Gong, L.-X.; Xue, C.-G.; Tang, L.-C. Green and Rapid Preparation of Fluorosilicone Rubber Foam Materials with Tunable Chemical Resistance for Efficient Oil–Water Separation. Polymers (Basel) 2022, 14, 1628. DOI: 10.3390/polym14081628.
  • Jun, Y.-S.; Sy, S.; Ahn, W.; Zarrin, H.; Rasen, L.; Tjandra, R.; Amoli, B. M.; Zhao, B.; Chiu, G.; Yu, A. Highly Conductive Interconnected Graphene Foam Based Polymer Composite. Carbon N. Y. 2015, 95, 653–658. DOI: 10.1016/j.carbon.2015.08.079.
  • Biron, M. Detailed Accounts of Thermoset Resins for Moulding and Composite Matrices. In Thermosets and Composites; Biron, M., Ed.; Woodhead Publishing: Oxford, UK, 2004; pp 183–327. DOI: 10.1016/B978-185617411-4/50006-1.
  • Williams, M. K.; Holland, D. B.; Melendez, O.; Weiser, E. S.; Brenner, J. R.; Nelson, G. L. Aromatic Polyimide Foams: Factors That Lead to High Fire Performance. Polym. Degrad. Stab. 2005, 88, 20–27. DOI: 10.1016/j.polymdegradstab.2003.12.012.
  • Guelcher, S. A.; Patel, V.; Gallagher, K. M.; Connolly, S.; Didier, J. E.; Doctor, J. S.; Hollinger, J. O. Synthesis and in Vitro Biocompatibility of Injectable Polyurethane Foam Scaffolds. Tissue Eng. 2006, 12, 1247–1259. DOI: 10.1089/ten.2006.12.1247.
  • Singhal, P.; Rodriguez, J. N.; Small, W.; Eagleston, S.; Van de Water, J.; Maitland, D. J.; Wilson, T. S. Ultra Low Density and Highly Crosslinked Biocompatible Shape Memory Polyurethane Foams. J. Polym. Sci. B Polym. Phys. 2012, 50, 724–737. DOI: 10.1002/polb.23056.
  • Victor, A.; Ribeiro, J.; F. Araújo, F, Sta Apolónia. Study of PDMS Characterization and Its Applications in Biomedicine: A Review. JMEB 2019, 4, 1–9. DOI: 10.24243/JMEB/4.1.163.
  • Yan, C.; Luo, Y.; Zhang, W.; Zhu, Z.; Li, P.; Li, N.; Chen, Y.; Jin, T. Preparation of a Novel Melamine Foam Structure and Properties. J. Appl. Poly. Sci. 2022, 139, 51992. DOI: 10.1002/app.51992.
  • Constantin, C. P.; Aflori, M.; Damian, R. F.; Rusu, R. D. Biocompatibility of Polyimides: A Mini-Review. Materials (Basel) 2019, 12, 3166. DOI: 10.3390/ma12193166.
  • Rodrigues, I. C. P.; Woigt, L. F.; Pereira, K. D.; Luchessi, A. D.; Lopes, É. S. N.; Webster, T. J.; Gabriel, L. P. Low-Cost Hybrid Scaffolds Based on Polyurethane and Gelatin. J. Mater. Res. Technol. 2020, 9, 7777–7785. DOI: 10.1016/j.jmrt.2020.04.049.
  • Tian, C.; Li, B.; Hu, X.; Wu, J.; Li, P.; Xiang, X.; Zu, X.; Li, S. Melamine Foam Derived 2H/1T MoS 2 as Flexible Interlayer with Efficient Polysulfides Trapping and Fast Li + Diffusion to Stabilize Li–S Batteries. ACS Appl. Mater. Interfaces. 2021, 13, 6229–6240. DOI: 10.1021/acsami.0c19725.
  • ACS. Polyurethane Chemistry: Renewable Polyols and Isocyanates 2021, ACS Publications. DOI: 10.1021/bk-2021-1380.
  • Wang, J.; Zhang, C.; Chen, D.; Sun, M.; Liang, N.; Cheng, Q.; Ji, Y.; Gao, H.; Guo, Z.; Li, Y.; et al. Fabrication of a Sensitive Strain and Pressure Sensor from Gold Nanoparticle-Assembled 3D-Interconnected Graphene Microchannel-Embedded PDMS. ACS Appl. Mater. Interfaces. 2020, 12, 51854–51863. DOI: 10.1021/acsami.0c16152.
  • Zhang, X.; Xiang, D.; Zhu, W.; Zheng, Y.; Harkin-Jones, E.; Wang, P.; Zhao, C.; Li, H.; Wang, B.; Li, Y. Flexible and High-Performance Piezoresistive Strain Sensors Based on Carbon Nanoparticles@Polyurethane Sponges. Compos. Sci. Technol. 2020, 200, 108437. DOI: 10.1016/j.compscitech.2020.108437.
  • Ma, C.; Zhou, R.; Xie, L. Recent Advances in Flexible Pressure/Strain Sensors Using Carbon Nanotubes. Int. J. Agric. Biol. Eng. 2022, 15, 1–12. DOI: 10.25165/j.ijabe.20221502.7364.
  • Dai, H.; Thostenson, E. T. Large-Area Carbon Nanotube-Based Flexible Composites for Ultra-Wide Range Pressure Sensing and Spatial Pressure Mapping. ACS Appl. Mater. Interfaces. 2019, 11, 48370–48380. DOI: 10.1021/acsami.9b17100.
  • Cao, M.; Su, J.; Fan, S.; Qiu, H.; Su, D.; Li, L. Wearable Piezoresistive Pressure Sensors Based on 3D Graphene. Chem. Eng. J. 2021, 406, 126777. DOI: 10.1016/j.cej.2020.126777.
  • Huang, L.; Chen, J.; Xu, Y.; Hu, D.; Cui, X.; Shi, D.; Zhu, Y. Three-Dimensional Light-Weight Piezoresistive Sensors Based on Conductive Polyurethane Sponges Coated with Hybrid CNT/CB Nanoparticles. Appl. Surf. Sci. 2021, 548, 149268. DOI: 10.1016/j.apsusc.2021.149268.
  • Ko, W.-Y.; Huang, L.-T.; Lin, K.-J. Green Technique Solvent-Free Fabrication of Silver Nanoparticle–Carbon Nanotube Flexible Films for Wearable Sensors. Sens. Actuators A Phys. 2021, 317, 112437. DOI: 10.1016/j.sna.2020.112437.
  • Ma, L.; Lei, X.; Guo, X.; Wang, L.; Li, S.; Shu, T.; Cheng, G. J.; Liu, F. Carbon Black/Graphene Nanosheet Composites for Three-Dimensional Flexible Piezoresistive Sensors. ACS Appl. Nano Mater. 2022, 5, 7142–7149. DOI: 10.1021/acsanm.2c01081.
  • Han, Z.; Li, H.; Xiao, J.; Song, H.; Li, B.; Cai, S.; Chen, Y.; Ma, Y.; Feng, X. Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS Appl. Mater. Interfaces. 2019, 11, 33370–33379. DOI: 10.1021/acsami.9b12929.
  • Hu, J.; Yu, J.; Li, Y.; Liao, X.; Yan, X.; Li, L. Nano Carbon Black-Based High Performance Wearable Pressure Sensors. Nanomaterials (Basel) 2020, 10, 664. DOI: 10.3390/nano10040664.
  • Czech, Z.; Kowalczyk, A.; Pełech, R.; Wróbel, R. J.; Shao, L.; Bai, Y.; Świderska, J. Using of Carbon Nanotubes and Nano Carbon Black for Electrical Conductivity Adjustment of Pressure-Sensitive Adhesives. Int. J. Adhes. Adhes. 2012, 36, 20–24. DOI: 10.1016/j.ijadhadh.2012.04.004.
  • Natsuki, J. A Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications. IJMSA. 2015, 4, 325. DOI: 10.11648/j.ijmsa.20150405.17.
  • Gómez-Hernández, R.; Panecatl-Bernal, Y.; Méndez-Rojas, M. Á. High Yield and Simple One-Step Production of Carbon Black Nanoparticles from Waste Tires. Heliyon 2019, 5, e02139. DOI: 10.1016/j.heliyon.2019.e02139.
  • Wu, D.; Wu, L.; Zhou, W.; Sun, Y.; Zhang, M. Relations between the Aspect Ratio of Carbon Nanotubes and the Formation of Percolation Networks in Biodegradable Polylactide/Carbon Nanotube Composites. J. Polym. Sci. B Polym. Phys. 2010, 48, 479–489. DOI: 10.1002/polb.21909.
  • Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; Guo, Z. Overview of Carbon Nanostructures and Nanocomposites for Electromagnetic Wave Shielding. Carbon N Y 2018, 140, 696–733. DOI: 10.1016/j.carbon.2018.09.006.
  • Li, Q.; Zhong, B.; Zhang, W.; Jia, Z.; Jia, D.; Qin, S.; Wang, J.; Razal, J. M.; Wang, X. Ti 3 C 2 MXene as a New Nanofiller for Robust and Conductive Elastomer Composites. Nanoscale 2019, 11, 14712–14719. DOI: 10.1039/C9NR03661J.
  • Yang, K.; Yin, F.; Xia, D.; Peng, H.; Yang, J.; Yuan, W. A Highly Flexible and Multifunctional Strain Sensor Based on a Network-Structured MXene/Polyurethane Mat with Ultra-High Sensitivity and a Broad Sensing Range. Nanoscale 2019, 11, 9949–9957. DOI: 10.1039/C9NR00488B.
  • Hasan, M. M.; Hossain, M. M.; Chowdhury, H. K. Two-Dimensional MXene-Based Flexible Nanostructures for Functional Nanodevices: A Review. J. Mater. Chem. A 2021, 9, 3231–3269. DOI: 10.1039/D0TA11103A.
  • Wu, Z.; Wei, L.; Tang, S.; Xiong, Y.; Qin, X.; Luo, J.; Fang, J.; Wang, X. Recent Progress in Ti3C2T x MXene-Based Flexible Pressure Sensors. ACS Nano. 2021, 15, 18880–18894. DOI: 10.1021/acsnano.1c08239.
  • Alsharaeh, E. Polystyrene-Poly(Methyl Methacrylate) Silver Nanocomposites: Significant Modification of the Thermal and Electrical Properties by Microwave Irradiation. Materials (Basel) 2016, 9, 458. DOI: 10.3390/ma9060458.
  • Saha, D. R.; Mandal, A.; Mitra, S.; Mada, M. R.; Boughton, P.; Bandyopadhyay, S.; Chakravorty, D. 2013 Nanoindentation Studies on Silver Nanoparticles. In AIP Conference Proceedings; American Institute of Physics; Vol. 1536, pp 257–258. DOI: 10.1063/1.4810198.
  • Zhou, M.; Wei, Z.; Qiao, H.; Zhu, L.; Yang, H.; Xia, T. Particle Size and Pore Structure Characterization of Silver Nanoparticles Prepared by Confined Arc Plasma. J. Nanomater. 2009, 2009, 1–5. DOI: 10.1155/2009/968058.
  • Wen, M.; Sun, X.; Su, L.; Shen, J.; Li, J.; Guo, S. The Electrical Conductivity of Carbon Nanotube/Carbon Black/Polypropylene Composites Prepared through Multistage Stretching Extrusion. Polymer (Guildf) 2012, 53, 1602–1610. DOI: 10.1016/j.polymer.2012.02.003.
  • Li, Y.; Huang, X.; Zeng, L.; Li, R.; Tian, H.; Fu, X.; Wang, Y.; Zhong, W.-H. A Review of the Electrical and Mechanical Properties of Carbon Nanofiller-Reinforced Polymer Composites. J. Mater. Sci. 2019, 54, 1036–1076. DOI: 10.1007/s10853-018-3006-9.
  • Kaptakov, M. O. Investigation of Effective Mechanical Characteristics of Nanomodified Carbon-Epoxide Composite by Numerical and Analytical Methods. TURCOMAT 2021, 12, 535–541. DOI: 10.17762/turcomat.v12i5.1049.
  • Deng, L.; Eichhorn, S. J.; Kao, C.-C.; Young, R. J. The Effective Young’s Modulus of Carbon Nanotubes in Composites. ACS Appl. Mater. Interfaces. 2011, 3, 433–440. DOI: 10.1021/am1010145.
  • Poirier, E.; Chahine, R.; Bénard, P.; Cossement, D.; Lafi, L.; Mélançon, E.; Bose, T. K.; Désilets, S. Storage of Hydrogen on Single-Walled Carbon Nanotubes and Other Carbon Structures. Appl. Phys. A 2004, 78, 961–967. DOI: 10.1007/s00339-003-2415-y.
  • Wang, S.; Tian, Y.; Hang, C.; Wang, C. Cohesively Enhanced Electrical Conductivity and Thermal Stability of Silver Nanowire Networks by Nickel Ion Bridge Joining. Sci. Rep. 2018, 8, 5260. DOI: 10.1038/s41598-018-21777-0.
  • Jing, G. Y.; Duan, H. L.; Sun, X. M.; Zhang, Z. S.; Xu, J.; Li, Y. D.; Wang, J. X.; Yu, D. P. Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy. Phys. Rev. B 2006, 73, 235409. DOI: 10.1103/PhysRevB.73.235409.
  • Lee, J.-U.; Yoon, D.; Cheong, H. Estimation of Young’s Modulus of Graphene by Raman Spectroscopy. Nano Lett. 2012, 12, 4444–4448. DOI: 10.1021/nl301073q.
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. DOI: 10.1021/nl802558y.
  • Shayesteh Zeraati, A.; Mirkhani, S. A.; Sun, P.; Naguib, M.; Braun, P. V.; Sundararaj, U. Improved Synthesis of Ti 3 C 2 T x MXenes Resulting in Exceptional Electrical Conductivity, High Synthesis Yield, and Enhanced Capacitance. Nanoscale 2021, 13, 3572–3580. DOI: 10.1039/D0NR06671K.
  • Firestein, K. L.; von Treifeldt, J. E.; Kvashnin, D. G.; Fernando, J. F. S.; Zhang, C.; Kvashnin, A. G.; Podryabinkin, E. V.; Shapeev, A. V.; Siriwardena, D. P.; Sorokin, P. B.; Golberg, D. Young’s Modulus and Tensile Strength of Ti3C2 MXene Nanosheets as Revealed by in Situ TEM Probing, AFM Nanomechanical Mapping, and Theoretical Calculations. Nano Lett. 2020, 20, 5900–5908. DOI: 10.1021/acs.nanolett.0c01861.
  • Yang, S.-Y.; Lin, W.-N.; Huang, Y.-L.; Tien, H.-W.; Wang, J.-Y.; Ma, C.-C. M.; Li, S.-M.; Wang, Y.-S. Synergetic Effects of Graphene Platelets and Carbon Nanotubes on the Mechanical and Thermal Properties of Epoxy Composites. Carbon N. Y. 2011, 49, 793–803. DOI: 10.1016/j.carbon.2010.10.014.
  • Liu, L.; Zhang, J.; Zhao, J.; Liu, F. Mechanical Properties of Graphene Oxides. Nanoscale 2012, 4, 5910–5916. DOI: 10.1039/c2nr31164j.
  • Zhang, S.; Wang, H.; Liu, J.; Bao, C. Measuring the Specific Surface Area of Monolayer Graphene Oxide in Water. Mater. Lett. 2020, 261, 127098. DOI: 10.1016/j.matlet.2019.127098.
  • Boland, C. S.; Khan, U.; Binions, M.; Barwich, S.; Boland, J. B.; Weaire, D.; Coleman, J. N. Graphene-Coated Polymer Foams as Tuneable Impact Sensors. Nanoscale 2018, 10, 5366–5375. DOI: 10.1039/C7NR09247D.
  • Moosa, A. A.; Sa, A. R.; Ibrahim, M. N. Mechanical and Electrical Properties of Graphene Nanoplates and Carbon-Nanotubes Hybrid Epoxy Nanocomposites. Am. J. Mater. Sci. 2016, 6, 157–165. DOI: 10.5923/j.materials.20160606.03.
  • Li, Z.-F.; Zhang, H.; Liu, Q.; Sun, L.; Stanciu, L.; Xie, J. Fabrication of High-Surface-Area Graphene/Polyaniline Nanocomposites and Their Application in Supercapacitors. ACS Appl. Mater. Interfaces. 2013, 5, 2685–2691. DOI: 10.1021/am4001634.
  • P, A.; Naina Mohamed, S.; Singaravelu, D. L.; Brindhadevi, K.; Pugazhendhi, A. A Review on Graphene/Graphene Oxide Supported Electrodes for Microbial Fuel Cell Applications: Challenges and Prospects. Chemosphere 2022, 296, 133983. DOI: 10.1016/j.chemosphere.2022.133983.
  • Dobson, J. F.; Gould, T.; Vignale, G. How Many-Body Effects Modify the Van Der Waals Interaction between Graphene Sheets. Phys. Rev. X 2014, 4, 021040. DOI: 10.1103/PhysRevX.4.021040.
  • Tsoi, S.; Dev, P.; Friedman, A. L.; Stine, R.; Robinson, J. T.; Reinecke, T. L.; Sheehan, P. E. Van Der Waals Screening by Single-Layer Graphene and Molybdenum Disulfide. ACS Nano. 2014, 8, 12410–12417. DOI: 10.1021/nn5050905.
  • Sumfleth, J.; Buschhorn, S. T.; Schulte, K. Comparison of Rheological and Electrical Percolation Phenomena in Carbon Black and Carbon Nanotube Filled Epoxy Polymers. J. Mater. Sci. 2011, 46, 659–669. DOI: 10.1007/s10853-010-4788-6.
  • Song, P.; Song, J.; Zhang, Y. Stretchable Conductor Based on Carbon Nanotube/Carbon Black Silicone Rubber Nanocomposites with Highly Mechanical, Electrical Properties and Strain Sensitivity. Compos B Eng. 2020, 191, 107979. DOI: 10.1016/j.compositesb.2020.107979.
  • Atif, R.; Inam, F. Reasons and Remedies for the Agglomeration of Multilayered Graphene and Carbon Nanotubes in Polymers. Beilstein J. Nanotechnol. 2016, 7, 1174–1196. DOI: 10.3762/bjnano.7.109.
  • Mohan, V. B.; Brown, R.; Jayaraman, K.; Bhattacharyya, D. Characterisation of Reduced Graphene Oxide: Effects of Reduction Variables on Electrical Conductivity. Mater. Sci. Eng. 2015, 193, 49–60. DOI: 10.1016/j.mseb.2014.11.002.
  • Davis, J. R.; Tucker, R. C. Handbook Thermal Spray Technology, ASM International: Materials Park, OH, 2004. DOI: 10.31399/asm.hb.v05a.9781627081719.
  • Karthikeyan, J. Cold Spray Technology: The Cold Spray Process Has the Potential to Reduce Costs and Improve Quality in Both Coatings and Freeform Fabrication of near-Net-Shape Parts. Adv. Mater. Processes 2005, 163, 33–36.
  • Assadi, H.; Gärtner, F.; Stoltenhoff, T.; Kreye, H. Bonding Mechanism in Cold Gas Spraying. Acta Mater. 2003, 51, 4379–4394. DOI: 10.1016/S1359-6454(03)00274-X.
  • Mattox, D. M. Vacuum Deposition, Reactive Evaporation, and Gas Evaporation. In Surface Engineering; Sedriks, A. J., Ed.; ASM International: Materials Park, OH, ASM International, 1994; pp 556–572. DOI: 10.31399/asm.hb.v05.a0001287.
  • Cramer, S. D.; Covino, B. S. Jr, Corrosion: Fundamentals, Testing, and Protection, Volume 13A, ASM Handbook. J. Therm. Spray Technol. 2003, 12, 459.
  • Guo, Q.; Ghadiri, R.; Weigel, T.; Aumann, A.; Gurevich, E.; Esen, C.; Medenbach, O.; Cheng, W.; Chichkov, B.; Ostendorf, A. Comparison of in Situ and Ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers (Basel) 2014, 6, 2037–2050. DOI: 10.3390/polym6072037.
  • Chun, S.; Hong, A.; Choi, Y.; Ha, C.; Park, W. A Tactile Sensor Using a Conductive Graphene-Sponge Composite. Nanoscale 2016, 8, 9185–9192. DOI: 10.1039/C6NR00774K.
  • Huang, Y.; Zhang, J.; Pu, J.; Guo, X.; Qiu, J.; Ma, Y.; Zhang, Y.; Yang, X. Resistive Pressure Sensor for High-Sensitivity e-Skin Based on Porous Sponge Dip-Coated CB/MWCNTs/SR Conductive Composites. Mater. Res. Express 2018, 5, 065701. DOI: 10.1088/2053-1591/aac8c0.
  • Krebs, F. C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. DOI: 10.1016/j.solmat.2008.10.004.
  • Zhang, P.; Chen, Y.; Li, Y.; Zhang, Y.; Zhang, J.; Huang, L. Erratum: A Flexible Strain Sensor Based on the Porous Structure of a Carbon Black/Carbon Nanotube Conducting Network for Human Motion Detection (Sensors, (2020). 20, 1154, 10.3390/S20041154). Sensors (Switzerland) 2020, 20, 2901. DOI: 10.3390/s20102901.
  • Aziz, F.; Ismail, A. F. Spray Coating Methods for Polymer Solar Cells Fabrication: A Review. Mater. Sci. Semicond. Process 2015, 39, 416–425. DOI: 10.1016/j.mssp.2015.05.019.
  • Paszkiewicz, S.; Szymczyk, A. Graphene-Based Nanomaterials and Their Polymer Nanocomposites. In Nanomaterials and Polymer Nanocomposites; Elsevier, 2019; pp 177–216. DOI: 10.1016/B978-0-12-814615-6.00006-0.
  • Hu, Z.; Xin, Y.; Fu, Q. Ultrahigh Sensitivity and Wide Strain Range of Porous Pressure Sensor Based on Binary Conductive Fillers by in-Situ Polymerization. J. Polym. Res. 2021, 28, 134. DOI: 10.1007/s10965-021-02484-3.
  • Behrisch, R.; Wittmaack, K. Sputtering by Particle Bombardment I. In Topics in Applied Physics, Behrisch, R. ed., Springer: Berlin, 1981; Vol. 47. DOI: 10.1007/3-540-10521-2.
  • Tewari, A.; Gandla, S.; Bohm, S.; McNeill, C. R.; Gupta, D. Highly Exfoliated MWNT–RGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications. ACS Appl. Mater. Interfaces. 2018, 10, 5185–5195. DOI: 10.1021/acsami.7b15252.
  • Ma, Z.; Wei, A.; Ma, J.; Shao, L.; Jiang, H.; Dong, D.; Ji, Z.; Wang, Q.; Kang, S. Lightweight, Compressible and Electrically Conductive Polyurethane Sponges Coated with Synergistic Multiwalled Carbon Nanotubes and Graphene for Piezoresistive Sensors. Nanoscale 2018, 10, 7116–7126. DOI: 10.1039/c8nr00004b.
  • Zhong, W.; Ding, X.; Li, W.; Shen, C.; Yadav, A.; Chen, Y.; Bao, M.; Jiang, H.; Wang, D. Facile Fabrication of Conductive Graphene/Polyurethane Foam Composite and Its Application on Flexible Piezo-Resistive Sensors. Polymers (Basel) 2019, 11, 1289. DOI: 10.3390/polym11081289.
  • Liu, Q.; Liu, Y.; Shi, J.; Liu, Z.; Wang, Q.; Guo, C. F. High-Porosity Foam-Based Iontronic Pressure Sensor with Superhigh Sensitivity of 9280 KPa − 1. Nanomicro. Lett. 2022, 14, 21. DOI: 10.1007/s40820-021-00770-9.
  • Beccatelli, M.; Villani, M.; Gentile, F.; Bruno, L.; Seletti, D.; Nikolaidou, D. M.; Culiolo, M.; Zappettini, A.; Coppedè, N. All-Polymeric Pressure Sensors Based on PEDOT:PSS-Modified Polyurethane Foam. ACS Appl. Polym. Mater. 2021, 3, 1563–1572. DOI: 10.1021/acsapm.0c01389.
  • Wang, L.; Wang, D.; Wu, Z.; Luo, J.; Huang, X.; Gao, Q.; Lai, X.; Tang, L.-C.; Xue, H.; Gao, J. Self-Derived Superhydrophobic and Multifunctional Polymer Sponge Composite with Excellent Joule Heating and Photothermal Performance for Strain/Pressure Sensors. ACS Appl. Mater. Interfaces. 2020, 12, 13316–13326. DOI: 10.1021/acsami.0c00150.
  • Li, X. P.; Li, Y.; Li, X.; Song, D.; Min, P.; Hu, C.; Zhang, H. B.; Koratkar, N.; Yu, Z. Z. Highly Sensitive, Reliable and Flexible Piezoresistive Pressure Sensors Featuring Polyurethane Sponge Coated with MXene Sheets. J. Colloid Interface Sci. 2019, 542, 54–62. DOI: 10.1016/j.jcis.2019.01.123.
  • Wang, X.; Li, H.; Wang, T.; Niu, X.; Wang, Y.; Xu, S.; Jiang, Y.; Chen, L.; Liu, H. Flexible and High-Performance Piezoresistive Strain Sensors Based on Multi-Walled Carbon Nanotubes@Polyurethane Foam. RSC Adv. 2022, 12, 14190–14196. DOI: 10.1039/D2RA01291J.
  • Nabeel, M.; Varga, M.; Kuzsella, L.; Fiser, B.; Vanyorek, L.; Viskolcz, B. The Effect of Pore Volume on the Behavior of Polyurethane-Foam-Based Pressure Sensors. Polymers (Basel) 2022, 14, 3652. DOI: 10.3390/polym14173652.
  • Feng, D.; Xu, D.; Wang, Q.; Liu, P. Highly Stretchable Electromagnetic Interference (EMI) Shielding Segregated Polyurethane/Carbon Nanotube Composites Fabricated by Microwave Selective Sintering. J. Mater. Chem. C 2019, 7, 7938–7946. DOI: 10.1039/C9TC02311A.
  • Zhai, Y.; Yu, Y.; Zhou, K.; Yun, Z.; Huang, W.; Liu, H.; Xia, Q.; Dai, K.; Zheng, G.; Liu, C.; Shen, C. Flexible and Wearable Carbon Black/Thermoplastic Polyurethane Foam with a Pinnate-Veined Aligned Porous Structure for Multifunctional Piezoresistive Sensors. Chem. Eng. J. 2020, 382, 122985. DOI: 10.1016/j.cej.2019.122985.
  • Lü, X.; Yu, T.; Meng, F.; Bao, W. Wide‐Range and High‐Stability Flexible Conductive Graphene/Thermoplastic Polyurethane Foam for Piezoresistive Sensor Applications. Adv. Mater. Technol. 2021, 6, 2100248. DOI: 10.1002/admt.202100248.
  • Gai, C.; Li, D.; Zhang, X.; Zhang, H.; Li, N.; Zheng, X.; Wu, D.; Sun, J. Scalable Fabrication of Flexible Single‐Layer Strain and Double‐Layer Pressure Sensors by Inkjet Printing for Subtle Vibration Detection. Adv. Mater. Inter. 2021, 8, 2100632. DOI: 10.1002/admi.202100632.
  • Mersch, J.; Winger, H.; Nocke, A.; Cherif, C.; Gerlach, G. Experimental Investigation and Modeling of the Dynamic Resistance Response of Carbon Particle‐Filled Polymers. Macro. Materials Eng. 2020, 305, 2000361. DOI: 10.1002/mame.202000361.
  • Azizkhani, M. B.; Kadkhodapour, J.; Rastgordani, S.; Anaraki, A. P.; Shirkavand Hadavand, B. Highly Sensitive, Stretchable Chopped Carbon Fiber/Silicon Rubber Based Sensors for Human Joint Motion Detection. Fibers Polym. 2019, 20, 35–44. DOI: 10.1007/s12221-019-8662-0.
  • Lv, B.; Chen, X.; Liu, C. A Highly Sensitive Piezoresistive Pressure Sensor Based on Graphene Oxide/Polypyrrole@Polyurethane Sponge. Sensors (Basel) 2020, 20, 1219. DOI: 10.3390/s20041219.
  • Nabeel, M.; Varga, M.; Kuzsela, L.; Filep, Á.; Fiser, B.; Viskolcz, B.; Kollar, M.; Vanyorek, L. Preparation of Bamboo-Like Carbon Nanotube Loaded Piezoresistive Polyurethane-Silicone Rubber Composite. Polymers (Basel) 2021, 13, 2144. DOI: 10.3390/polym13132144.
  • Zhao, L.; Qiang, F.; Dai, S.-W.; Shen, S.-C.; Huang, Y.-Z.; Huang, N.-J.; Zhang, G.-D.; Guan, L.-Z.; Gao, J.-F.; Song, Y.-H.; Tang, L.-C. Construction of Sandwich-like Porous Structure of Graphene-Coated Foam Composites for Ultrasensitive and Flexible Pressure Sensors. Nanoscale 2019, 11, 10229–10238. DOI: 10.1039/C9NR02672J.
  • Qiang, F.; Hu, L.-L.; Gong, L.-X.; Zhao, L.; Li, S.-N.; Tang, L.-C. Facile Synthesis of Super-Hydrophobic, Electrically Conductive and Mechanically Flexible Functionalized Graphene Nanoribbon/Polyurethane Sponge for Efficient Oil/Water Separation at Static and Dynamic States. Chem. Eng. J. 2018, 334, 2154–2166. DOI: 10.1016/j.cej.2017.11.054.
  • Zhao, X.; Meng, F.; Peng, Y. Flexible and Highly Pressure-Sensitive Ternary Composites-Wrapped Polydimethylsiloxane Sponge Based on Synergy of Multi-Dimensional Components. Compos B Eng. 2022, 229, 109466. DOI: 10.1016/j.compositesb.2021.109466.
  • Wu, X.; Han, Y.; Zhang, X.; Zhou, Z.; Lu, C. Large-Area Compliant, Low-Cost, and Versatile Pressure-Sensing Platform Based on Microcrack-Designed Carbon Black@Polyurethane Sponge for Human–Machine Interfacing. Adv. Funct. Mater. 2016, 26, 6246–6256. DOI: 10.1002/adfm.201601995.
  • Ding, Y.; Xu, T.; Onyilagha, O.; Fong, H.; Zhu, Z. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Appl. Mater. Interfaces. 2019, 11, 6685–6704. DOI: 10.1021/acsami.8b20929.
  • Chen, X.; Li, R.; Niu, G.; Xin, M.; Xu, G.; Cheng, H.; Yang, L. Porous Graphene Foam Composite-Based Dual-Mode Sensors for Underwater Temperature and Subtle Motion Detection. Chem. Eng. J. 2022, 444, 136631. DOI: 10.1016/j.cej.2022.136631.
  • Sencadas, V.; Tawk, C.; Alici, G. Highly Sensitive Soft Foam Sensors to Empower Robotic Systems. Adv. Mater. Technol. 2019, 4, 1900423. DOI: 10.1002/admt.201900423.
  • Xu, B.; Ye, F.; Chen, R.; Luo, X.; Xue, Z.; Li, R.; Chang, G. A Supersensitive Wearable Sensor Constructed with PDMS Porous Foam and Multi-Integrated Conductive Pathways Structure. Ceram. Int. 2023, 49, 4641–4649. DOI: 10.1016/j.ceramint.2022.09.351.
  • Cheng, L.; Feng, J. Facile Fabrication of Stretchable and Compressible Strain Sensors by Coating and Integrating Low-Cost Melamine Foam Scaffolds with Reduced Graphene Oxide and Poly (Styrene-b-Ethylene-Butylene-b-Styrene). Chem. Eng. J. 2020, 398, 125429. DOI: 10.1016/j.cej.2020.125429.
  • Huang, L.; Wang, H.; Zhan, D.; Fang, F. Flexible Capacitive Pressure Sensor Based on Laser-Induced Graphene and Polydimethylsiloxane Foam. IEEE Sensors J. 2021, 21, 12048–12056. DOI: 10.1109/JSEN.2021.3054985.
  • Yang, J.; Ye, Y.; Li, X.; Lü, X.; Chen, R. Flexible, Conductive, and Highly Pressure-Sensitive Graphene-Polyimide Foam for Pressure Sensor Application. Compos Sci. Technol. 2018, 164, 187–194. DOI: 10.1016/j.compscitech.2018.05.044.
  • Hashim, A.; Hadi, A. Novel Pressure Sensors Made from Nanocomposites (Biodegradable Polymers–Metal Oxide Nanoparticles): Fabrication and Characterization. Ukr. J. Phys. 2018, 63, 754. DOI: 10.15407/ujpe63.8.754.
  • Zheng, S.; Wu, X.; Huang, Y.; Xu, Z.; Yang, W.; Liu, Z.; Huang, S.; Xie, B.; Yang, M. Highly Sensitive and Multifunctional Piezoresistive Sensor Based on Polyaniline Foam for Wearable Human-Activity Monitoring. Compos Part A Appl. Sci. Manuf. 2019, 121, 510–516. DOI: 10.1016/j.compositesa.2019.04.014.
  • Sengupta, D.; Pei, Y.; Kottapalli, A. G. P. Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors. ACS Appl. Mater. Interfaces. 2019, 11, 35201–35211. DOI: 10.1021/acsami.9b11776.
  • Jiang, H.; Zhang, J.; Qin, M.; Zhang, J.; Zou, X.; Weng, X. A Flexible Piezoresistive Strain Sensor Based on Black Phosphorus/Gold Nanocomposites Interspersed Sponge for Motion Sensing. Sens. Actuators A Phys. 2023, 356, 114359. DOI: 10.1016/j.sna.2023.114359.
  • Wan, Y.; Jiang, H.; Ren, Y.; Liu, Y.; Zhang, L.; Lei, Q.; Zhu, D.; Liu, J.; Zhang, X.; Ma, N.; Cong, X. Photothermal Self-Healable Polypyrrole-Polyurethane Sponge with Dynamic Covalent Oximino Bonds for Flexible Strain Sensors. Eur. Polym. J. 2023, 193, 112097. DOI: 10.1016/j.eurpolymj.2023.112097.
  • Li, K.; Yang, W.; Shen, Z.; Zhang, X.; Yi, M. Flexible Graphene Pressure Sensor Based on Sponge Sewn with Cotton. Sens Actuators A Phys. 2023, 354, 114266. DOI: 10.1016/j.sna.2023.114266.
  • Wang, L.; Wang, H.; Xiao, W.; Wan, Q.; Gao, J. Mechanically Durable and Amphiphobic Rubber Foam Composites for Strain/Pressure Sensors. Compos. Commun. 2023, 40, 101590. DOI: 10.1016/j.coco.2023.101590.
  • Lin, X.; Wu, F.; He, Y.; Liu, M. Flexible and Wearable Strain–Temperature Sensors Based on Chitosan/Ink Sponges. Molecules 2023, 28, 4083. DOI: 10.3390/molecules28104083.
  • Xu, B.; Ye, F.; Chen, R.; Luo, X.; Chang, G.; Li, R. A Wide Sensing Range and High Sensitivity Flexible Strain Sensor Based on Carbon Nanotubes and MXene. Ceram. Int. 2022, 48, 10220–10226. DOI: 10.1016/j.ceramint.2021.12.235.
  • Luo, R.; Cui, Y.; Li, H.; Wu, Y.; Du, B.; Zhou, S.; Hu, J. Fragmented Graphene Aerogel/Polydimethylsiloxane Sponges for Wearable Piezoresistive Pressure Sensors. ACS Appl. Nano Mater. 2023, 6, 7065–7076. DOI: 10.1021/acsanm.3c01285.
  • Li, Y.; Cui, Y.; Zhang, M.; Li, X.; Li, R.; Si, W.; Sun, Q.; Yu, L.; Huang, C. Ultrasensitive Pressure Sensor Sponge Using Liquid Metal Modulated Nitrogen-Doped Graphene Nanosheets. Nano Lett. 2022, 22, 2817–2825. DOI: 10.1021/acs.nanolett.1c04976.
  • Li, B.; Luo, J.; Huang, X.; Lin, L.; Wang, L.; Hu, M.; Tang, L.; Xue, H.; Gao, J.; Mai, Y. W. A Highly Stretchable, Super-Hydrophobic Strain Sensor Based on Polydopamine and Graphene Reinforced Nanofiber Composite for Human Motion Monitoring. Compos B Eng. 2020, 181, 107580. DOI: 10.1016/j.compositesb.2019.107580.
  • Wang, Q.; Huang, X.; Han, F.; Wu, Y.; Wang, L.; Dai, H.; Song, P.; Tang, L.; Gao, J. Superhydrophobic, Biocompatible and Durable Nanofiber Composite with an Asymmetric Structure for Anisotropic Strain Sensing and Body Motion Detection. Chem. Eng. J. 2022, 450, 137899. DOI: 10.1016/j.cej.2022.137899.
  • Li, S.-N.; He, X.-F.; Zeng, Z.-F.; Jiang, B.; Wu, Q.; Gong, L.-X.; Li, Y.; Bae, J.; Wang, S.; Tang, L.-C. Mechanically Ductile, Ionically Conductive and Low-Temperature Tolerant Hydrogel Enabled by High-Concentration Saline towards Flexible Strain Sensor. Nano Energy 2022, 103, 107789. DOI: 10.1016/j.nanoen.2022.107789.
  • Li, S. N.; Li, B.; Yu, Z. R.; Gong, L. X.; Xia, Q. Q.; Feng, Y.; Jia, D.; Zhou, Y.; Tang, L. C. Chitosan in-Situ Grafted Magnetite Nanoparticles toward Mechanically Robust and Electrically Conductive Ionic-Covalent Nanocomposite Hydrogels with Sensitive Strain-Responsive Resistance. Compos Sci. Technol. 2020, 195, 108173. DOI: 10.1016/j.compscitech.2020.108173.
  • Wu, L.; Luo, J.; Li, Y.; Zhang, W.; Wang, L.; Huang, X.; Xiao, W.; Tang, L.; Gao, J. Emulsion Dipping Based Superhydrophobic, Temperature Tolerant, and Multifunctional Coatings for Smart Strain Sensing Applications. Compos Sci. Technol. 2021, 216, 109045. DOI: 10.1016/j.compscitech.2021.109045.